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Abstract. We determine the asymptotic quantum variance of microlocal lifts

of Hecke–Maass cusp forms on the arithmetic compact hyperbolic surfaces at-

tached to maximal orders in quaternion algebras. Our result extends those
for the non-compact modular surface obtained by Luo–Sarnak–Zhao, whose

method required a cusp. The global arguments in our proof involve an an-

alytic study of the theta correspondence, the interplay between additive and
multiplicative harmonic analysis on quaternion algebras, the equidistribution

of translates of elementary theta functions, and the Rallis inner product for-

mula. These reduce the proof to local problems involving the construction and
analysis of microlocal lifts via integral operators on the group, addressed using

an analytic incarnation of the method of coadjoint orbits.
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1. Introduction

1.1. Overview. The quantum variance problem (see, e.g., [28, §1], [7], [51, §15.6],
[36, §4.1.3], [39, 22, 15, 23, 24, 55]) concerns sums of the shape∑

φ∈F
⟨φ,Ψ1φ⟩⟨Ψ2φ,φ⟩. (1.1)

Here Ψ1,Ψ2 are fixed mean-zero functions on the unit cotangent bundle of a Rie-
mannian manifold M with ergodic geodesic flow, F traverses a sequence of families
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of microlocal lifts of Laplace eigenfunctions with eigenvalues in [0, T 2], and T → ∞.
The problem is to determine the leading order asymptotic behavior of (1.1). The
difficulty of the problem may be appreciated by comparing the expected magni-
tude ≍ T for (1.1) for typical Ψ1 = Ψ2 with the best known general upper bound
O(T dim(M)/ log T ) (see, e.g., [28, §1] and references for details).

Although a mathematically rigorous solution to the problem seems hopeless on
general M , Sarnak–Zhao [39] (following Luo–Sarnak [23] and Zhao [55]) managed
to solve it completely on M = SL2(Z)\H for F consisting of Hecke eigenfunctions.
It is natural to seek analogous results on other arithmetic quotients, such as the
compact quotients attached to orders in quaternion division algebras. The method
of Luo, Sarnak and Zhao demonstrates the power of parabolic Fourier expansions,
such as the q-expansions

∑
anq

n enjoyed by classical holomorphic modular forms
on SL2(Z) at the cusp ∞, to establish results that are inaccessible by means of
semiclassical analysis or trace formulas alone. Conversely, their technique is funda-
mentally limited to split quotients, such SL2(Z)\H and its congruence covers, on
which such expansions are available.

In this article, we develop systematically a method for studying quantum vari-
ance that applies also to non-split arithmetic quotients arising from non-split
quaternion algebras, in contrast to the split matrix algebra M2(Q) underlying the
quotient SL2(Z)\H considered by Luo, Sarnak and Zhao. Part 1 of this paper es-
tablishes global estimates concerning the quantum variance of general families of
automorphic forms (see Theorem 3, stated in §1.8, and Theorem 4, stated in §5).
Part 2 provides additional local estimates, at the archimedean place, relevant for
determining the quantum variance of families of microlocal lifts of Hecke–Maass
forms (Theorem 1) and its analogue for holomorphic forms (Theorem 2).

1.2. Trace formulas and linear statistics. Let X := Γ\G be the quotient by
an arithmetic lattice of the points of a semisimple Q-group over a local field, such
as the real numbers, and let F be a “large” collection of eigenfunctions φ : X → C.
One can ask for the asymptotic statistics, as F traverses a sequence of families, of
the random measure on X sending a test function Ψ to ⟨φ,Ψφ⟩, where φ ∈ F is
sampled randomly with respect to (say) the normalized counting measure.

The linear statistics of this random measure are captured by the mean Ψ 7→
Eφ∈F ⟨φ,Ψφ⟩. When F admits a nice harmonic-analytic description, it can be (at
least approximately) picked off by a convolution kernel f ∈ C∞c (G). The mean can
then be studied using trace formula techniques: by integrating the pretrace formula∑

γ∈Γ
f(x−1γy) ≈

∑
φ∈F

φ(x)φ(y) (x, y ∈ Γ\G) (1.2)

over the diagonal against Ψ, one obtains an identity∑
φ∈F

⟨φ,Ψφ⟩ ≈
∫
x∈Γ\G

Ψ(x)
∑
γ∈Γ

f(x−1γx) dx (1.3)

whose right hand side may be studied by methods for bounding orbital integrals
much as in the “Weyl’s law” case Ψ ≡ 1.

Higher-order statistics, such as the n-point correlations

(Ψ1, · · · ,Ψn) 7→ Eφ∈F ⟨φ,Ψ1φ⟩ · · · ⟨φ,Ψnφ⟩,
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are more mysterious. The quantum variance problem concerns the quadratic sta-
tistics (1.1), about which trace formulas alone say little.

1.3. Hecke multiplicativity and variance statistics. Until this series of works,
the only known asymptotic formulas for higher-order statistics in this setting of §1.2
were those of Luo–Sarnak–Zhao concerning SL2(Z)\ SL2(R). The point of departure
for their method is that when the eigenfunctions φ admit Fourier expansions whose
coefficients λ(n) enjoy a “doubling identity” of the shape

λ(m)λ(n) =
∑

λ(· · · ), (1.4)

one can try to reduce variance statistics to linear ones and apply trace formulas
such as (1.2). This method does not apply when such expansions are not available.

1.4. Theta functions and variance statistics. When the space X arises from
a quaternion algebra B (over Q, say), the Eichler/Shimizu theta correspondence
provides an analogue of the doubling identity (1.4) that suggests a natural strategy
for studying quantum variance. We pursue this strategy here. Let F be a family
of eigenfunctions on X. Oversimplifying for now, Shimizu’s theorem (see [46, II.1])
says that one can find

• a space X′ (a congruence cover of PGL2(Z)\PGL2(R)),
• a function of three variables Θ : X×X×X′ → C (a theta kernel), and
• for each φ ∈ F , a function Φφ : X′ → C (an Eichler/Jacquet–Langlands
lift)

with the property that

φ(x)φ(y) =

∫
z

Φφ(z)Θ(x, y; z) dz for all φ ∈ F and x, y ∈ X. (1.5)

By integrating the diagonal case x = y of (1.5) against Ψ, one obtains

⟨φ,Ψφ⟩ =
∫
z

Φφ(z)

∫
x

Ψ(x)Θ(x, x; z) dx dz. (1.6)

If the functions Φφ are orthogonal to one another and the family F is sufficiently
“complete,” then a cavalier application of Parseval’s formula to (1.6) suggests that∑

φ∈F

(∫
|Φφ|2

)−1
⟨φ,Ψ1φ⟩⟨Ψ2φ,φ⟩

=

∫
z

(∫
x

Ψ1(x)Θ(x, x; z) dx

)(∫
y

Ψ2(y)Θ(y, y; z) dy

)
dz.

(1.7)

The left hand side of (1.7) may be understood as a reasonable proxy for the quantum
variance (1.1) of F provided that the weights

∫
|Φφ|2 are sufficiently uniform in

φ. A first aim of this article is to develop robust techniques for determining the
asymptotics of the right hand side of (1.7), which is not a priori any simpler to
analyze than the left hand side. A second aim is to apply the resulting machinery
to an interesting family of automorphic forms.

We have oversimplified by neglecting that the theta kernel Θ produced by
Shimizu’s theorem may (and generally does) depend upon the automorphic form
φ. For the above argument to make sense, we need to choose one Θ that works for
every element of the family F . It is natural instead to interpret (1.7) as defining a
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(weighted) family F in terms of Θ. A third aim of this article is then to clarify in
general how to invert the association Θ 7→ F .

1.5. Setup and notation. We now prepare to state our main results. To
that end, we begin by recalling (from, e.g., [41, §9] or [44, §4] or [45, §38])
the parametrization of arithmetic hyperbolic surfaces Y and their unit cotangent
bundles X, restricting for simplicity to those attached to maximal orders. Let
M := M2(R) denote the 2 × 2 matrix algebra and G := PGL2(R) = M×/R× its
projectivized unit group. Let F be a totally real number field. (Our results are
new when F = Q, but the generality does not introduce complication.) Let B be a
quaternion algebra over F for which there is exactly one real place q of F such that
Bq is isomorphic toM ; we fix such an isomorphism, together with a maximal order
R ⊆ B, and denote by Γ ⩽ G the image of R× under the induced isomorphism
B×q /F

×
q

∼= G. Then Γ ⩽ G is a discrete cofinite subgroup; it is cocompact except
when B is split, in which case F = Q and B ∼= M2(Q). We denote by K ⩽ G the
image of O(2) and by G1,K1,Γ1, the subgroups consisting of positive determinant
elements. We take

X := Γ\G, Y := X/K1.

We equip G with any Haar measure dg and X with any G-invariant measure. We
write ⟨φ1, φ2⟩ :=

∫
X
φ1φ2 for φ1, φ2 ∈ L2(X). The group G acts unitarily on L2(X)

by right translation: gφ(x) := φ(xg).
We assume for simplicity of presentation that F has odd narrow class number.

The strong approximation theorem (see §5.5.2 or [45, §28]) then identifies X, rather
than a finite disjoint union of similarly defined quotients, with the adelic quotient
G(F )\G(A)/J , where

• A denotes the adele ring of F ,
• G denotes the F -algebraic group A 7→ (B ⊗F A)×/A×, and
• J = J∞

∏
p<∞ Jp, with Jp the image of R×p and J∞ ∼= SO(3)[F :Q]−1 the

points of G over the product of the archimedean completions of F other
than Fq.

We obtain for each finite prime p of F a Hecke operator Tp acting on L2(X), defined
by a sum over cosets. The number of cosets is |p| + 1 or 1 according as p does or
does not split Bp, where |p| denotes the absolute norm. These operators commute
with one another and also with G. Strong approximation also implies that the
group Γ contains elements of negative determinant. We may thus identify X with
Γ1\G1 and Y with Γ1\H, where H ∼= G1/K1 is the hyperbolic plane.

By an eigenfunction Ψ : X → C, we mean a smooth K-finite function that
generates an irreducible representation of G and is a Tp-eigenfunction for each p.

We assume that B is non-split, so that X is compact. We denote by L2
0(X) ⊆

L2(X) the subspace of mean-zero functions and by A0 the set of subspaces
π ⊆ L2

0(X) that are irreducible under G and eigenspaces for each Tp. The smooth
K-finite vectors in π are eigenfunctions in the above sense, and each nonzero eigen-
function generates one such π. The multiplicity one theorem implies that the space
L2
0(X) is the Hilbert direct sum of the π ∈ A0. Under strong approximation in the

sense noted above, A0 identifies with the set of generic automorphic representations
of G containing a nonzero J-invariant vector.

Each π ∈ A0 has an infinitesimal character λπ ∈ R, describing the action of
the center of the universal enveloping algebra of G (see §6.3). If λπ < 0, then
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π contains a one-dimensional space of K1-invariant vectors φπ; these descend to
Laplace eigenfunctions on Y of eigenvalue 1/4− λπ, giving a bijection

{π ∈ A0 : λπ < 0} ↔ {Hecke–Maass eigenforms φπ on Y of eigenvalue > 1/4}
scaling

.

We normalize φπ so that ⟨φπ, φπ⟩ = 1. We denote by µπ the representation-
theoretic microlocal lift of φπ constructed by Zelditch and studied in the related
work of Sarnak–Zhao [39]. We recall the precise construction of µπ in §6.5. We
mention for now only that it is a functional

µπ : {K-finite smooth Ψ : X → C} → C (1.8)

with the following properties:

• Lifting. If Ψ is K1-invariant, so that it comes from a function on Y, then
µπ(Ψ) = ⟨φπΨ, φπ⟩.

• Flow invariance. µπ is asymptotically invariant by the diagonal subgroup
H of G in the sense that for each fixed h ∈ H and Ψ as above, the difference
µπ(hΨ)− µπ(Ψ) tends to zero as |λπ| → ∞.

For further discussion concerning the µπ, we refer to [53, 52, 54, 50, 49, 20, 42, 1].
A theorem of Lindenstrauss [21], resolving a case of the arithmetic quan-

tum unique ergodicity conjecture of Rudnick–Sarnak [38], implies that µπ(Ψ) →
⟨Ψ, 1⟩/ vol(X) for each fixed continuous function Ψ : X → C as |λπ| → ∞. Equiv-
alently, µπ(Ψ) → 0 when Ψ has mean zero.

Let S denote the (finite) set of finite primes of F at which B ramifies. For p ∈ S,
the operator Tp is an involution, so we may speak of the parity of an eigenfunction
with respect to Tp. The local root number of σ ∈ A0 at the distinguished real place
q is of the form ±1; it is +1 precisely when π admits a nonzero functional invariant
by the normalizer in G of H. We say that σ ∈ A0 is even if

• for each p ∈ S, the Tp-eigenvalue of σ is +1, and
• the local root number of σ at q is +1.

If σ is not even, then µπ(Ψ) = 0 for all Ψ ∈ σ (see §6.6); for this reason, we focus
primarily on even σ. We say also that an eigenfunction Ψ is even if it belongs to
an even σ ∈ A0.

For a function Ψ : X → C, we write Ψw := 1
2 (Ψ + wΨ) for its symmetrization

with respect to the Weyl element w :=

(
1

−1

)
∈ G.

We equip the diagonal subgroup H ⩽ G with the Haar measure given by∫
H

f :=

∫
y∈R×

f(

(
y

1

)
)
dy

|y|
,

where dy denotes Lebesgue measure.
We denote in what follows by L(S)(· · · , s) the finite part of an L-function, omit-

ting Euler factors in S. For π ∈ A0, we abbreviate ιπ := L(S)(adπ, 1).

1.6. Main result. We henceforth fix a pair of nonzero mean-zero even eigenfunc-
tions Ψ1,Ψ2. We denote by σ1, σ2 ∈ A0 the representations that they generate.
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Theorem 1 (Quantum variance of microlocal lifts on compact arithmetic surfaces).
The limit

lim
h→0

h
∑
π∈A0:

0<− h2 λπ<1

ιπµπ(Ψ1)µπ(Ψ2) (1.9)

exists. If σ1 ̸= σ2, then that limit is zero. If σ1 = σ2 =: σ, then it is given by

cB
2π
L(S)(σ, 12 )

∫
s∈H

⟨sΨw1 ,Ψw2 ⟩ ds, (1.10)

where cB := 2#Sζ
(S)
F (2)/ vol(X).

Remark 1. As discussed in [39] or §3.1.6, the integral on the right hand side of
(1.10) converges absolutely. We note also that each of the expressions (1.9) and
(1.10) is independent of the choice of Haar measure on X. If we equip X with the

pullback of the standard hyperbolic measure dx dy
y2 on Y, then we may verify as in

[47, §1] that
cB
2π

= 2#S
(4π2)[F :Q]−1∏

p∈S(1 + 1/|p|)

4∆
3/2
F ∆B

where ∆F and ∆B denote the absolute discriminant and absolute reduced discrim-
inant, respectively, and |p| denotes the absolute norm of the finite prime p. For
instance, if F = Q, then

cB
2π

= 2#S
∏
p∈S(1 + 1/p)

4∆B

The factor 2#S may be understood (see §9.2) as coming from the nontrivial nor-
malizer of Γ, corresponding to the involutory Hecke operators Tp (p ∈ S). If one
instead sums over only those π having eigenvalue +1 under such operators, then
this factor disappears.

Remark 2. The proof gives a rate of convergence in (1.9) of the form hδ for some
fixed δ > 0. We do not explicate or optimize the exponent here. For the variant
problem obtained by replacing the sharp truncation 0 < − h2 λπ < 1 by a smooth

dyadic weight, one could likely optimize our methods to obtain the rate O(h1/2)
and show that this rate is best possible (cf. [28, §6.5]).

Remark 3. For the sake of comparison1 with [39], we note that∫
s∈H

⟨sΨw1 ,Ψw2 ⟩ ds = 2

∫
u∈R

⟨
(
eu/2

e−u/2

)
Ψsym

1 ,Ψsym
2 ⟩ du, (1.11)

where Ψsym denotes the average of Ψ over its translates by the four-element sub-
group of G generated by diag(−1, 1) and w.

Remark 4. The “arithmetic weights” ιπ arise in our method for reasons illustrated
best by [28, §2.8, §7]. They have mild size (O(h−ε) for any fixed ε > 0) and
mean 1. Sarnak–Zhao [39] showed in the non-compact case that if one modifies
the sums (1.9) by omitting the weights ιπ, then the conclusion remains valid after
multiplying the main term (1.10) by a certain explicit factor cσ > 0. To do this,
they used zero density estimates for families of L-functions to approximate ι−1π for

1Our main term is half the analogue of that obtained in the cited reference, due to minor
computational errors in the latter.
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most π by a short Dirichlet polynomial, and then appealed to estimates for Hecke-
twisted variants of (1.9). Their method applies in our setting with the (analogous)
constant

cσ :=
1

ζ
(S)
F (2)

∏
p/∈S

(
1− λσ(p)

|p|3/2 + |p|1/2

)
, (1.12)

where λσ(p) denotes the Hecke eigenvalue normalized so that the Ramanujan con-
jecture says |λσ(p)| ⩽ 2. We do not replicate here the details of their argument,
but explain in §9.1 how the factor cσ arises naturally from the perspective of our
method.

Remark 5. In §9.2, we extend the semiclassical heuristics for variance asymptotics
from the generic non-arithmetic setting (see, e.g., [51, §15.6], [36, §4.1.3]) to the
setting of Theorem 1. In brief, the generic heuristics come from postulating that the
average of µπ(Ψ1)µπ(Ψ2) over π ∈ F should be approximated by the double average

of µπ1
(Ψ1)µπ2

(Ψ2) restricted to those π1, π2 ∈ F whose archimedean parameters are

close in the sense that
∣∣√−λπ1

−
√
−λπ2

∣∣ < ε for some small ε > 0. In arithmetic
settings, it is natural to impose the further condition that |λπ1(p)− λπ2(p)| < ε for
all small primes p. We show that, modulo identifying limits of finite Euler products
with their formal L-function limits, the resulting predictions are consistent with
our results.

1.7. The holomorphic analogue. Our method applies just as well to holomor-
phic forms, giving an extension of Luo–Sarnak [24, Thm 1] to the setting of compact
arithmetic surfaces.2

Let π ∈ A0 with λπ > 0. Then π, as a representation of G, is a discrete series
representation of lowest weight k for some natural number k, and λπ = (k− 1/2)2.
(We normalize so that k is not necessarily even – see §6.3.) For such π, the analogue
of the microlocal lifts are the L2-masses µπ(Ψ) := ⟨φπΨ, φπ⟩ attached to a unit
vector φπ ∈ π of weight k, i.e., the lift of a holomorphic modular form on Y. Such
measures are K-invariant, so it suffices to test them against observables Ψ that are
likewise K-invariant. Thus, fix a pair of nonzero K-invariant eigenfunctions Ψ1,Ψ2

whose Tp-eigenvalue, for each p ∈ S, is +1, and let σ1, σ2 ∈ A0 denote the (even)
representations that they generate.

Theorem 2 (Quantum variance of holomorphic forms on compact arithmetic sur-
faces). The limit

lim
h→0

h
∑
π∈A0:

0<h2 λπ<1

ιπµπ(Ψ1)µπ(Ψ2)

exists. If σ1 ̸= σ2, then that limit is zero. If σ1 = σ2 =: σ, then it is given by

cBL
(S)(σ, 12 )⟨Ψ1,Ψ2⟩

with cB as in Theorem 1.

The proof differs very mildly from that of Theorem 1. A unified treatment could
be given, but to keep the exposition concrete, we first prove Theorem 1, then explain
in §8.4 the modifications needed to obtain a proof of Theorem 2.

2Our main term is half the analogue of that obtained in the cited reference, due to a minor
error in the latter: on p788, the penultimate display should be multiplied by 1/2, since the sum

before (36) is taken only over even integers.
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1.8. A quadratic trace formula. To present the proof of Theorem 1 as clearly
as we can, we separate the difficulties concerning general families of automorphic
forms (Part 1) from those specific to the families of microlocal lifts considered above
(Part 2). Our treatment of general families is encapsulated by a result which we
now formulate.

Let π ∈ A0. We identify finite-rank operators T on π with finite-rank tensors
T =

∑
i vi⊗v′i ∈ π⊗π. Given any such T and any bounded measurable Ψ : X → C,

we set
µ(T,Ψ) :=

∑
i

⟨viΨ, v′i⟩.

We verify readily (see, e.g., [35, §26.3]) that |µ(T,Ψ)| ⩽ ∥T∥1∥Ψ∥L∞ , where ∥.∥1
denotes the trace norm. We may thus extend the assignment T 7→ µ(T,Ψ) contin-
uously to trace class operators T on π, and in particular, to the integral operators
π(f) :=

∫
g∈G f(g)π(g) dg attached to f ∈ C∞c (G) and our choice of Haar measure

dg on G. Equivalently, we may express µ(T,Ψ) as the absolutely convergent sum

µ(T,Ψ) =
∑

v∈B(π)

⟨Tv ·Ψ, v⟩,

where B(π) is an orthonormal basis for π consisting of K-isotypic vectors.
Recall that we have fixed some nonzero mean-zero even eigenfunctions Ψ1 ∈

σ1,Ψ2 ∈ σ2. We define hermitian forms V and M on C∞c (G) as follows:

• V(f) :=
∑
π∈A0

ιπµ(π(f),Ψ1)µ(π(f),Ψ2).
• For a function f : G→ C, we define its “symmetrization under inversion”

Sf(g) :=
f(g) + f(g−1)

2

and, for g ∈ G, the conjugated function g · f(x) := f(g−1xg)
• If σ1 ̸= σ2, then M(f) := 0. If σ1 = σ2 =: σ, then we set

M(f) := cBL
(S)(σ, 12 )I(f),

with cB as in (1.10) and

I(f) :=
∫
g∈G

⟨g ·Sf,Sf⟩G⟨gΨ1,Ψ2⟩ dg

with ⟨, ⟩G the inner product in L2(G).

We note that the sum defining V(f) converges rapidly (see §4.3.2, §5.2) and the
integral defining M(f) converges absolutely (see §3.1.6, §3.4.4).

For any real vector space V , we denote by S(V ) the space of Schwartz functions.
Recall that M = M2(R) denotes the 2 × 2 matrix algebra. For each τ ∈ R× and
f ∈ C∞c (G), we define ♡τf ∈ S(M) by the formula

♡τf(x) := 1M×(x)
W (τ det(x))

|τ det(x)|
f(pr(x)),

where pr :M× → G denotes the natural projection and W ∈ C∞c (R×) is a nonzero
test function that we fix once and for all.

Remark. The motivation for introducing the sums V(f) is that for suitable f , they
will be seen to approximate the basic variance sums of interest. The “expected
main terms” M(f) will arise after some calculations involving theta functions and
the Rallis inner product formula. We refer to §9.2 for some heuristic discussion,
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independent of our rigorous arguments, about why one should expect V(f) ≈ M(f)
for nice enough f . The operators ♡τ should be understood as associating to a
function on the multiplicative group G its “thickening” on the additive group M .
The key observation concerning these operators, detailed in §5, is that ♡τf is the
kernel of a theta function with L2-norm proportional to V(f).

Let M0 ⩽ M denote the trace zero subspace. We identify R with the subspace
of scalar matrices in M . We then have an orthogonal decomposition M = R⊕M0.

For y ∈ R×, we denote by Dy the operator on S(M) given by normalized scaling
of the M0 component: for Φ ∈ S(M), t ∈ R, u ∈M0,

DyΦ(t+ u) := |y|3/2Φ(t+ yu).

It extends to a unitary operator on L2(M).

Theorem 3. There is a finite subset X of R× and a collection (Eτ1,τ2)τ1,τ2∈X of
sesquilinear forms on S(M) so that for each f ∈ C∞c (G),

V(f) = M(f) +
∑

τ1,τ2∈X
Eτ1,τ2(♡τ1f,♡τ2f). (1.13)

Moreover, there is a continuous seminorm C on the Schwartz space S(M) so that
for all y ∈ R× and ϕ1, ϕ2 ∈ S(M),

|Eτ1,τ2(Dyϕ1, Dyϕ2)| ⩽
log(|y|+ |y|−1)

|y|+ |y|−1
C(ϕ1)C(ϕ2). (1.14)

The proof is completed in §5.5.3. The key feature, elaborated in §1.10, is that
Theorem 3 reduces the proofs of Theorem 1 and Theorem 2 to local problems.

1.9. Outline of the proof of Theorem 3. We follow the general strategy of
§1.4. The thickenings f 7→ ♡τf have been carefully constructed so as to define
some Θ for which something like (1.7) holds. The integral

∫
z
Ψi(z)Θ(x, x; z) dz

does not define a theta lift of Ψi in the traditional sense, but instead decomposes
as a sum of products θi(z)hi(z), where θi is a variant of the Jacobi theta function
and hi is a theta lift of Ψi. The right hand side of (1.7) then decomposes as a sum
of inner products

⟨θ1h1, θ2h2⟩. (1.15)

Suppose we can approximate each such inner product by

⟨θ1, θ2⟩⟨h1, h2⟩. (1.16)

The Rallis inner product formula [8, 9] for theta lifts applies to (1.16); summing it
up, we obtain ∑

φ∈F

(∫
|Φφ|2

)−1
⟨φ,Ψ1φ⟩⟨Ψ2φ,φ⟩ ≈ ♯I(f), (1.17)

where:

• ≈ means up to the error incurred by replacing each term (1.15) with (1.16),
and

• ♯ means “modify by a central L-value as in Theorem 1.”
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To complete the proof of Theorem 3, we must show that the “error” hidden by ≈
satisfies the required estimate. Unfolding the definitions of our theta series, this
reduces to showing that, for Dy the diagonal flow attached to y ∈ R×,

⟨θ1 ·Dyh1, θ2 ·Dyh2⟩ = ⟨θ1θ2, Dy(h1h2)⟩

= ⟨θ1, θ2⟩⟨h1, h2⟩+O

(
log(|y|+ |y|−1)

|y|+ |y|−1

)
,

where the error depends continuously upon the data underlying θi, hj . This esti-

mate is a variant, established in [33] for the non-square-integrable function θ1θ2, of
the well-known mixing property for the diagonal flow.

1.10. Deduction of Theorem 1 from Theorem 3. Here we reduce that de-
duction to a series of estimates, established in Part 2.

We first set some asymptotic notation and terminology. We consider a sequence
{h} of positive reals h tending to zero, as in the statement of Theorem 1. By an
“h-dependent element” of a set U , we mean a map {h} → U , which we under-
stand colloquially as an element u ∈ U that depends (perhaps implicitly) upon the
parameter h. The word “fixed” will be taken to mean “independent of h.” Our
default convention is that quantities not labeled “fixed” may depend upon h, but
we will usually mention this dependence for the sake of clarity. Standard asymp-
totic notation is defined accordingly: A = O(B), A ≪ B and B ≫ A mean that
|A| ⩽ c|B| for some fixed c ⩾ 0, while A ≍ B means that A≪ B ≪ A; the meaning
of an infinite exponent as in A = O(h∞) is that the indicated estimate holds upon
substituting for ∞ any fixed positive quantity. The fixed quantities c may of course
depend upon any previously mentioned fixed quantities. We always assume that
h is small enough with respect to any mentioned fixed quantities. (For instance,
we may speak of an h-dependent element π ∈ A0 satisfying 1/2 < −h2 λπ < 1; its
microlocal lift µπ is an h-dependent distribution on X that satisfies |µπ(Ψ)| = O(1)
for fixed Ψ as in (1.8); for fixed Ψ ∈ C∞(X), we have ⟨φπ,Ψ⟩ = O(h∞).)

For the proof of Theorem 1, a simple approximation argument reduces our task to
showing that there is a fixed δ > 0 so that for each fixed nonnegative k ∈ C∞c (R<0),

h
∑
π∈A0

ιπk(h
2 λπ)

2µπ(Ψ1)µπ(Ψ2) = ckL
(S)(σ, 12 )

∫
s∈H

⟨sΨw1 ,Ψw2 ⟩ ds+O(hδ), (1.18)

where ck := cB
∫
t∈R⩾0

k(−t2)2 dt
2π . Indeed, it is enough to show this for a class K of

h-dependent nonnegative functions k ∈ C∞c (R<0) with the following properties:

• (K is “controlled”) Each k ∈ K is supported on a fixed compact subset of
R<0 and bounded from above by a fixed quantity.

• (K is “sufficiently rich”) For each fixed nonnegative k0 ∈ Cc(R<0), we may
find k, k+ ∈ K so that |k − k0| ⩽ k+ and

∫
k+ → 0 as h → 0.

We construct such a class K explicitly in §7.3. (In fact, for the class that we
construct, quantitatively stronger properties hold, adequate for obtaining the rate
mentioned in Remark 2.)

In §8.1 and beyond, we construct for each k ∈ K an h-dependent element f ∈
C∞c (G) and show that

V(f) = h
∑
π∈A0

ιπk(h
2 λπ)

2µπ(Ψ1)µπ(Ψ2) + O(hδ) (1.19)
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and

I(f) =
∫
s∈H

⟨sΨw1 ,Ψw2 ⟩ ds
∫
t>0

k(−t2)2 dt
2π

+O(hδ) (1.20)

and

Eτ1,τ2(♡τ1f,♡τ2f) ≪ h1−δ
′

(1.21)

for fixed τ1, τ2 ∈ R×, where δ′ = δ′(δ) > 0 is a fixed quantity with δ′ → 0 as δ → 0.
The required estimate (1.18) then follows from the identity (1.13).

The idea behind the construction of f , completed in §8.1, is to arrange that π(f)
is an approximate weighted projector onto a “space” spanned by unit vectors v ∈ π
for which ⟨vΨ, v⟩ ≈ µπ(Ψ); this leads to (1.19). The orbit method and philosophy
developed in [35] and summarized in §6.7 is a suitable tool for constructing and
studying such approximate projectors. This step of the proof may be understood
as implementing the identity (1.2) for the family of microlocal lifts.

For the proof (§8.2) of the main term estimate (1.20), we pull the inner product
⟨, ⟩G back to the Lie algebra, apply Parseval, and disintegrate the resulting integral
along the coadjoint orbits; the subgroup H then arises naturally as the stabilizer of
the “limiting microlocal support” of the vectors underlying µπ. In particular, the
H-integral in Theorem 1 arises naturally and geometrically, unlike in [39].

The error estimate (1.21), proved in §8.3, is ultimately a consequence of (1.14)
and the fact that the function f that we construct concentrates just above the scale
1 + O(h) ⊆ G and barely oscillates below that scale. The thickenings ♡τf(x), for
fixed τ , are thus given in “polar coordinates” x = r1/2g (r > 0, g ∈ SL2(R)) by a
mildly modulated bump function on the region where r ≍ 1 and g = 1+O(h). This
region may also be described in “Cartesian coordinates”: it consists of x ∈ M for
which trace(x) ≍ 1 and whose traceless part x0 := x− trace(x)/2 satisfies |x0| ≪ h.
It follows that ♡τf is the image under D1/ h of an essentially fixed function, so we
are in good position to apply (1.14).

1.11. Related work. The prequel [29] applies the results of Part 1 of this paper to
the “p-adic microlocal lifts” introduced in [30]; the analysis there is simpler, owing
mainly to the availability of exact projectors in the p-adic Hecke algebra. The
prequel to the prequel [28] introduces the method by application to the simplest
nontrivial case, but taking many ad hoc shortcuts. The paper [31] employs a related
method to give nontrivial quantum variance upper bounds in a “horizontal” level
aspect, where new difficulties emerge. The spiritual ancestor to each of these was
the paper [27] concerning the numerical evaluation of modular forms on compact
arithmetic surfaces.

Raphael Steiner [43] (see also [17, 16]) recently introduced a method for bounding
sup norms of automorphic forms via fourth moments

∑
φ∈F |φ(g)|4 over families.

Such moments may be understood as “degenerate quantum variance sums” obtained
by taking the observables Ψ1 = Ψ2 to be point masses. The first step in Steiner’s
method and ours are related: both consist of expressing the sums of interest in terms
of inner products of theta functions. The methods diverge thereafter: Steiner et
al. use geometry of numbers techniques to obtain upper bounds, while we employ
(among other things) spectral theory to obtain asymptotic formulas.
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Part 1. Quantum variance and theta functions

The purpose of this section is to prove Theorem 3. The inputs are the general ma-
chinery of theta functions, the multiplicity one theorem and Eichler/Shimizu/Jacquet–
Langlands correspondence, the Rallis inner product formula, and the results of the
companion article [33] concerning the spectral decomposition of |θ|2 for one-variable
theta functions θ. A key construction is that of the ♡τ operators (§5.2.4); these
solve the “inversion problem,” mentioned at the end of §1.4, of constructing theta
functions whose integrals recover quantum variance sums over any given family.

We deduce Theorem 3 by specializing a more general result, Theorem 4, formu-
lated adelically over number fields. The main benefit of working generally is that
each input to our proof is formulated adelically, and it is more natural to carry
out the classical translation once at the end of the proof rather than separately for
each input. An auxiliary benefit is that we may specialize in other ways, e.g., to
the depth aspect [29].

The main intermediary results are:

• The relation between quantum variance sums and integrals of theta func-
tions, and the identification of a proposed “main term” in the integrals of
theta functions that arise (Proposition 2, Lemma 5.4.3).

• General estimates for the “error terms” (Proposition 1).

These are related respectively to the Eichler/Shimizu correspondence, the Rallis
inner product formula, and a variant (established in [33]) of the equidistribution of
the diagonal flow.

The reader looking for a quick overview might first study carefully §2, §5.1, §5.2,
§5.3, which are essentially self-contained.

2. General notation

Let A be a field or an adele ring. Let B be a quaternion algebra over A. We
denote by ι : B → B the main involution, by nr : B → A the reduced norm
nr(x) := xxι, by tr : B → A the reduced trace tr(x) := x+ xι, and by B0 := {x ∈
B : tr(x) = 0} the subspace of traceless quaternions. We employ the notations

n(x) :=

(
1 x
0 1

)
, a(y) :=

(
y 0
0 1

)
, t(y) :=

(
y 0
0 y−1

)
, n′(x) :=

(
1 0
x 1

)
Ad(g)x := gxg−1, Ad(g)f(x) := f(g−1xg)

and

Sf(x) :=
f(x) + f(x− tr(x))

2
whenever they make sense. For example, this is the case if g belongs to the unit
group B× of a quaternion algebra B over A as above and x belongs to (resp. f is
a function on) one of the sets B×/A×, B,B0.

We define the right regular representation ρreg(g)f(x) := f(xg) whenever it
makes sense.

Given a local (resp. global) field F , a nontrivial unitary character ψ of F (resp.
of A/F ) and an element a ∈ F×, we denote by ψa the nontrivial unitary character
with the same domain as ψ given by ψa(x) := ψ(ax).

For a finite-dimensional vector space V over a local field or adele ring, we denote
by S(V ) the space of Schwartz–Bruhat functions ϕ : V → C, topologized as usual
(see, e.g., [48, §11]).
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Let G be a group over an adele ring or a finite product of local fields. We
let C∞c (G) denote the space of smooth compactly supported functions; as usual,
smooth means infinitely differentiable (resp. locally constant) with respect to the
archimedean (resp. non-archimedean) variables. Assume that we have equipped
G with a Haar measure dg. Let π be a smooth representation of a group that
contains G. Let f ∈ C∞c (G). We then define the operator π(f) ∈ End(π) by
π(f)v :=

∫
g∈G f(g)π(g)v dg.

The use of Vinogradov notation is standard: A = O(B), A ≪ B and B ≫ A
each signify that |A| ⩽ c|B| for some “constant” c, with dependencies indicated by
subscripts; A ≍ B signifies that A≪ B ≪ A.

We write 1E for the characteristic function of a subset E of some set X. For an
assertion A, we set 1A := 1 if A is true and 1A := 0 if A is false.

We set C(1) := {z ∈ C× : |z| = 1}.

3. Local preliminaries

The purpose of this section is to collect local definitions, notation and identities
for later use. The notation introduced here should be self-descriptive with the
exception of that for the similitude Weil representation Ω defined in §3.2.5.

Let k be a local field of characteristic ̸= 2, thus k is either R, C or a finite
extension of Qp or (for p ̸= 2) of Fp(t). The assumption on the characteristic is
relevant only for sections discussing the Weil representation.

Let ψ : k → C(1) be a nontrivial unitary character of k, and let B be a quaternion
algebra over k. Set G := B×/k×. When k is non-archimedean, let R ⊂ B be a
maximal order.

3.1. Generalities.

3.1.1. The number field. We denote by |.| := |.|k : k → R⩾0 the normalized abso-
lute value, so that d(cx) = |c| dx for c ∈ k and any Haar measure dx on k.

Let ζk(s) denote the local zeta function, thus ζk(s) = π−s/2Γ(s/2), 2(2π)−sΓ(s)
or (1 − q−s)−1 as k = R,C, or a non-archimedean local field with residue field of
cardinality q.

Recall that B is split if it is isomorphic to the algebra M2(k) of 2× 2 matrices.
Otherwise, B is called non-split or ramified ; in that case, it is the unique (up to
isomorphism) quaternion division algebra over k, and the group G is compact.

When k is non-archimedean, we denote by o the maximal order, by q the maximal
ideal, by q := #o/q the cardinality of the residue field, byϖ ∈ q = ϖo a uniformizer
(thus |ϖ| = q−1), and by ∆ψ the absolute conductor of ψ : k → C(1), thus ∆ψ = qd

if ψ is trivial on q−d but not on q−d−1. Recall that ψ is unramified if ∆ψ = 1.

3.1.2. Measures. For X ∈ {k,B0, B}, define the perfect pairing ⟨, ⟩ : X ⊗X → k
by ⟨x, y⟩ := xy if X = k and by ⟨x, y⟩ := tr(xιy) if X = B0, B. Equip X with the
Haar measure dx for which the Fourier transform F : S(X) → S(X) defined by
Ff(ξ) :=

∫
x∈X f(x)ψ(⟨x, ξ⟩) dx satisfies the inversion formula

FFf(x) = f(−x). (3.1)

Equip k× with the Haar measure
∫
k×
f :=

∫
x∈k× f(x)

dx
|x| .
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The quotient k×/k×2 is finite. We equip it with the Haar measure d×2 x compat-
ible with the squaring map, so that for f ∈ Cc(k

×),∫
x∈k×

f(x)
dx

|x|
=

∫
y∈k×/k×2

(∫
z∈k×

f(yz2)
dz

|z|

)
d×2 y. (3.2)

For f : k×/k×2 → C, one has explicitly
∫
x∈k×/k×2 f(x) d

×
2 y = |2|k

2

∑
x∈k×/k×2 f(x).

Equip G with the Haar measure dg for which the integral formula∫
x∈B

f(x) dx =

∫
g∈G

(∫
z∈k×

|nr(zg)|2f(zg) dz
|z|

)
dg (3.3)

holds for f ∈ Cc(B). When B = M2(k) is split, so that G = PGL2(k), a direct
calculation with differential forms gives for f ∈ Cc(G) that∫

G

f =

∫
x1,x2∈k

∫
y∈k×

f(n′(x1)n(x2)a(y)) dx1 dx2
dy

|y|
. (3.4)

3.1.3. Volume formulas. Assume (for all but the final assertion of §3.1.3) that k
is non-archimedean. Write vol(E ⊆ X) to denote the volume of E with respect to
the measure that we have defined on X. Let J ⩽ G denote the image of R×; if B
is split, then J is a maximal compact subgroup of G, otherwise it has index 2 in
the compact group G. Abbreviate vol(o) := vol(o ⊆ k), vol(o×) := vol(o× ⊆ k×),
vol(J) := vol(J ⊆ G), vol(R) := vol(R ⊆ B) and ∆ := ∆ψ. Let ∆B denote the
reduced discriminant, thus ∆Bp

= 1 or q according as B splits or ramifies. Set
ζB(s) := ζk(2s)ζk(2s− 1) if B splits and ζB(s) := ζk(2s) otherwise.

Lemma.

(i) vol(o) = ∆−1/2, vol(o×) = ζk(1)
−1∆−1/2.

(ii) vol(R) = ∆−1B ∆−4/2, vol(J) = ζk(1)ζB(1)
−1∆−1B ∆−3/2.

(iii) If B is split, then

vol(R)

vol(J)∆−1/2
= ζk(2).

(iv) If k is real, B is non-split and ψ(x) = e2πix, then vol(G) = 4π2.

Proof. For (i)—(iii), we may reduce by dimensional analysis to the case ∆ = 1.
The required formulas then follow from (3.2) applied to f = 1o or f = 1R and by
(3.3) applied to f = 11+ϖR (see [44, Lem 2.4.3] for details). For (iv), set f(x) :=
e−2π nr(x). Apply (3.1) to see that

∫
B
f = 1. Apply (3.3) and the substitution z 7→

z/(2π nr(g))1/2 to deduce that (2π)2 = vol(G)
∫
z∈R× |z|4e−|z|2 dz

|z| = vol(G). □

3.1.4. Cartan decomposition. Suppose B = M2(k), so that G = PGL2(k). Let
K ⩽ G be the standard maximal compact subgroup. ThenG = ∪y∈k×:|y|⩽1Ka(y)K.
When k is non-archimedean, one has for f ∈ Cc(K\G/K) the integral formula∫

G

f = vol(K)
∑
m⩾0

qm(1 + 1m>0q
−1)f(a(ϖm)). (3.5)
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3.1.5. The Ξ-function. Given a maximal compact subgroup K ⩽ G, let Ξ : G →
R>0 denote the Harish–Chandra function relative to K:

• If B is non-split, then Ξ ≡ 1.
• If B is split, then Ξ(g) = ⟨gv, v⟩, where v is a K-invariant unit vector in
the unitary induction of the trivial character of a Borel subgroup of G (see
[6]).

The following properties of Ξ are relevant for us:

(1) It satisfies Ξ(1) = 1, and is bi-K-invariant.
(2) If B is split, then under any fixed identification G = PGL2(k), one has

Ξ(a(y)) ≍ log(t)/t1/2 with t := |y|+ |y|−1.
(3) Let π be an irreducible unitary representation of G. If B is split, assume

that dim(π) > 1. Then there exists δ > 0 so that for v1, v2 ∈ π, one has
⟨gv1, v2⟩ ≪v1,v2 Ξ(g)δ for all g ∈ G. (See for instance [25, §2.5.1] for a more
precise assertion).

3.1.6. Convergence lemmas. We record some estimates that follow readily from
the Cartan decomposition for G.

Lemma 1. Either let X be one of the spaces B0, B and take ϕ1, ϕ2 ∈ S(X), or let
X = G and take ϕ1, ϕ2 ∈ C∞c (G). For g ∈ G, one then has

⟨Ad(g)ϕ1, ϕ2⟩L2(X) ≪ϕ1,ϕ2 Ξ(g)2.

Lemma 2. Let δ > 0.

(1) The integral
∫
g∈G Ξ2+δ(g) dg converges.

(2) Let E be a separable quadratic subalgebra of B. Let H ⩽ G denote the image
of E×. Equip H with some Haar measure. Then the integral

∫
h∈H Ξδ(h) dh

converges.

3.1.7. Conventions. By a representation of a k-group, we always mean

• a smooth representation, if k is non-archimedean, and otherwise
• the space of smooth vectors in a unitary representation.

3.2. Weil representations.

3.2.1. Quadratic spaces. Let V be a quadratic space over k, thus V is a finite-
dimensional k-vector space equipped with a non-degenerate quadratic form qV :
V × V → k. We denote by bV : V ⊗ V → k the associated non-degenerate bilinear
form given by bV (x, y) := qV (x+ y)− qV (x)− qV (y).

Recall that GO(V ) ⩽ GL(V ) consists of all g ∈ GL(V ) for which there exists
λ ∈ k× with qV (gx) = λqV (x) for all x ∈ V , O(V ) ⩽ GO(V ) is the subgroup
on which λ = 1, and SO(V ) = SL(V ) ∩ O(V ). The group GO(V ) contains the
subgroup k× of scalar operators, and we set PGO(V ) := GO(V )/k×.

Let µV denote the measure on V that is (ψ, bV )-self dual, i.e., that for which
F : S(V ) → S(V ) defined by Fϕ(ξ) :=

∫
x∈V ϕ(x)ψ(bV (x, ξ)) dµV (x) dx satisfies

FFϕ(x) = ϕ(−x).
The following examples of quadratic spaces are relevant for us:

(1) V = B, qV = nr, so that bV (x, ξ) = tr(xιξ) = ⟨x, ξ⟩.
(2) V = B0, qV the restriction of nr. The natural map Ad : G→ SO(B0) is an

isomorphism.
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(3) V = k, regarded as a subspace of B, and qV the restriction of nr, thus
qV (x) = x2 and bV (x, y) = 2xy for x ∈ V . In this case, we denote the
orthogonal group by O1(k) := O(V ) ∼= {±1}.

For V = B,B0, the measure dµV (x) coincides with dx as defined in §3.1.2.

3.2.2. Metaplectic group. Let Mp2(k) denote the metaplectic double cover of
SL2(k). It is convenient to identify Mp2(k) with SL2(k) × µ2, where µ2 := {±1},
with the group law given by (s1, ζ1)(s2, ζ2) = (s1s2, ζ1ζ2c(s1, s2)) for a cocycle c :
SL2(k)×SL2(k) → {±1} as in [11, p.19] or [33, §4.4]. Thus µ2 is a central subgroup

of Mp2(k), and one has a short exact sequence 1 → µ2 → Mp2(k)
pr−→ SL2(k) → 1.

3.2.3. Weil representation. For a quadratic space V , one has the Weil representa-
tion [48] on the Schwartz–Bruhat space S(V ):

ρψ,VWeil : Mp2(k)×O(V ) → GL(S(V )).

This representation is continuous [48, §39] for the standard topologies on all spaces
involved and extends to a unitary representation on L2(V ) := L2(V, µV ).

For the remainder of §3.2.3, abbreviate ρ := ρψ,VWeil. For s ∈ Mp2(k) or g ∈ O(V ),
we abbreviate ρ(s) := ρ(s, 1) and ρ(g) := ρ(1, g); one then has ρ(s)ρ(g) = ρ(g)ρ(s).

Elements ζ of the central subgroup µ2 of Mp2(k) act by the scalar operators
ρ(ζ) = ζdim(V ), so ρ factors through SL2(k) if and only if dim(V ) is even.

There is a quartic character χψ,V : k× → C(1) and an eighth root of unity

γψ,V ∈ C(1) so that, abbreviating ρ(s) := ρ((s, 1)) for s ∈ SL2(k), one has for
ϕ ∈ S(V ) and x ∈ V that

ρ(n(b))ϕ(x) = ψ(bqV (x))ϕ(x),

ρ(t(a))ϕ(x) = χψ,V (a)|a|dim(V )/2ϕ(ax),

ρ(w)ϕ(x) = γψ,V Fϕ(x).

If V =M2(k), then χψ,V is trivial and γψ,V = 1.
Elements g of the orthogonal group O(V ) act by ρ(g)ϕ(v) := ϕ(g−1v). Suppose

that V = B0, so that Ad : G
∼=−→ SO(B0). For g ∈ G and ϕ ∈ S(B0), the function

Ad(g)ϕ as defined in §2 agrees with ρ(Ad(g))ϕ: both send x ∈ B0 to ϕ(g−1xg).

3.2.4. Factorization. Let V be a quadratic space that admits an orthogonal de-
composition V = V ′⊕V ′′ as a sum of two quadratic spaces. (The relevant example
is when V = B, V ′ = k, V ′′ = B0.)

Recall the dense inclusion S(V ′)⊗ S(V ′′) → S(V ) obtained by identifying ϕ′ ⊗
ϕ′′ ∈ S(V ′)⊗ S(V ′′) with the function V ′ ⊕ V ′′ ∋ α′ + α′′ 7→ ϕ′(α′)ϕ′′(α′′).

Given continuous linear operators T, T ′, T ′′ on S(V ),S(V ′),S(V ′′), respectively,
write T = T ′⊗T ′′ to denote that T (ϕ′⊗ϕ′′) = T ′ϕ′⊗T ′′ϕ′′ for all ϕ′ ∈ S(V ′), ϕ′′ ∈
S(V ′′). In this sense, one has ρψ,VWeil(s) = ρψ,V

′

Weil (s)⊗ ρψ,V
′′

Weil (s) for all s ∈ Mp2(k).

We denote by 1 ⊗ ρψ,V
′′

Weil (s) the operator on S(V ) sending ϕ′ ⊗ ϕ′′ to ϕ′ ⊗
ρψ,V

′′

Weil (s)ϕ
′′.

3.2.5. Extension to similitudes. The following definitions were inspired by [46, I.3].
Let Ω denote the space of functions ϕ : k× ×B → C satisfying the conditions:

• For each t ∈ k×, the function ϕ[t] : B → C given by ϕ[t](x) := ϕ(t, x)
belongs to the Schwartz–Bruhat space S(B).
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• One has ϕ(z2t, x) = ϕ(t, zx) for all t, z ∈ k×, x ∈ B.

Let ρWeil : PGL2(k) × PGO(B) → GL(Ω) denote the representation characterized
by the identities: for s ∈ SL2(k), y ∈ k×, g ∈ GO(B),

(ρWeil(s)ϕ)[t] = ρψ
t,B

Weil (s)(ϕ[t]),

(ρWeil(a(y))ϕ)[t] = |y|ϕ[ty],
(ρWeil(g)ϕ)(t, x) = ϕ(λ(g)t, g−1x)

where λ : GO(B) → k× denotes the similitude factor.

Remark. More generally, if V is any even-dimensional quadratic space, then the

representation ρψ,VWeil factors through SL2(k)×O(V ). One can induce it to a repre-
sentation of GL2(k)×GO(V ) on S(k××V ), whose isomorphism class is independent
of ψ. By taking coinvariants for the action by the center, one arrives at a represen-
tation of PGL2(k)×PGO(V ). In the relevant case that V = B, the representation
obtained in that way is realized by Ω. Our global discussion concerns the restric-
tion of Ω to SL2(k) × O1(k) × O(B0), which embeds as the “even subspace” of

⊕τ∈k×/k×2ρψ
τ ,F

Weil ⊗ ρψ
τ ,B0

Weil .

Equip Ω with the invariant hermitian norm ∥.∥Ω given by

∥ϕ∥2Ω :=

∫
t∈k×/k×2

|t|2
∫
x∈B

|ϕ|2(t, x) dx d×2 t, (3.6)

or equivalently (by (3.3), (3.2)),

∥ϕ∥2Ω =

∫
g∈G

|nr(g)|2
∫
t∈k×

|t|2|ϕ|2(t, g) dt
|t|
dg. (3.7)

Define S : Ω → Ω and Ad(g) : Ω → Ω (g ∈ G) by applying the general definition
(§2) to the second coordinate, so that for ϕ ∈ Ω and (t, x) ∈ k× × B, one has
(Sϕ)[t] = S(ϕ[t]), Sϕ(t, x) = (ϕ(t, x)+ϕ(t, tr(x)−x))/2, Ad(g)ϕ = ρWeil(Ad(g))ϕ,
(Ad(g)ϕ)[t] = Ad(g)(ϕ[t]), Ad(g)ϕ(t, x) = ϕ(t, g−1xg).

3.2.6. The distinguished element. Suppose temporarily that k is non-archimedean
and that B ∼= M2(k) is split; similar considerations apply to non-split B, but we
do not need them. The distinguished element ϕ0 ∈ Ω (with respect to the chosen
maximal order R ⊂ B) is then defined by

ϕ0(t, x) :=

∫
z∈k× 1R(zx)1o×(z

−2t) dz|z|∫
z∈k× 1o×(z)

dz
|z|

. (3.8)

Note that ϕ0 takes values in {0, 1}. Let K ′ ⩽ PGO(B) denote the image of the
O(B)-stabilizer of R. One verifies directly that

(i) ϕ0 is K ′-invariant,
(ii) Sϕ0 = ϕ0, and
(iii) if ψ is unramified, then ϕ0 is invariant under PGL2(o) ⩽ PGL2(k).

Lemma 1. ∥ϕ0∥2Ω = vol(R).

Proof. Since ϕ takes values in {0, 1}, one has

∥ϕ0∥2Ω =

∫
t∈k×/k×2

|t|2
∫
x∈B

ϕ0(t, x) dx d×2 t.
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By expanding the definition of ϕ0 and using that
∫
x∈B 1R(zx) dx = |z|−4 vol(R)

and that |t|2|z|−41o×(z−2t) = 1o×(z
−2t), our task reduces to showing that∫

t∈k×/k×2

∫
z∈k×

1o×(z
−2t)

dz

|z|
d×2 t =

∫
x∈k×

1o×(x)
dx

|x|
,

as follows from (3.2). □

Let K ⩽ G denote the image of R×. We may then fix an identification B =
M2(k) under which G = PGL2(k), R =M2(o), K = PGL2(o).

Lemma 2. Let ϕ1, ϕ2 ∈ Cϕ0. Let g ∈ Ka(ϖm)K for some m ∈ Z⩾0 (see §3.1.4).
Then ⟨Ad(g)ϕ1, ϕ2⟩Ω = q−m⟨ϕ1, ϕ2⟩Ω.

Proof. We expand the definitions and use that vol(gRg−1 ∩R) = q−m vol(R). □

3.3. Generic representations of PGL2. We refer to [5, §4.4, §4.6] for details
on and proofs of the facts collected here. Let π be an irreducible representation
of PGL2(k). Recall that π is generic if it admits a Whittaker model W(π, ψ),
consisting of W : PGL2(k) → C satisfying W (n(x)g) = ψ(x)W (g). It then admits
a Kirillov model K(π, ψ), consisting of W : k× → C of the form W (y) :=W ′(a(y))
for someW ′ ∈ W(π, ψ). The vector space K(π, ψ) is independent of ψ and contains
C∞c (k×). Recall that π is unramified if the space πPGL2(o) of PGL2(o)-invariant
vectors in π is nonzero, and that in that case, dim(πPGL2(o)) = 1.

Suppose for the remainder of §3.3 that π is generic and unramified. Let ψ0 be
an unramified unitary character of k. There is then a unique PGL2(o)-invariant
vector W 0

π in the Kirillov model K(π, ψ0) of π for which W 0
π (1) = 1. There is a

unique unordered pair {α, β} of complex numbers, the Satake parameters of π, so
that for y ∈ k× with |y| = q−n,

W 0
π (y) = |y|1/2

∑
i,j∈Z⩾0:i+j=n

αiβj = 1o×(y)|y|1/2
αn+1 − βn+1

α− β
. (3.9)

One has in general αβ = 1; if moreover π is unitary, then either |α| = |β| = 1 or
α, β ∈ (−q1/2, q1/2) ⊆ R. The adjoint L-factor is defined for s ∈ C by

L(adπ, s) := (1− αβ−1q−s)−1(1− q−s)−1(1− α−1βq−s)−1.

We have the following standard geometric series evaluation (see, e.g., [5, Prop 3.8.1],
taking into account that we have normalized measures differently).

Lemma. If π is unitary and Re(s) ⩾ 0, then L(adπ, s) is finite, and one has the
identity ∫

y∈k×
|W 0

π (y)|2|y|s
dy

|y|
=
L(adπ, 1 + s)

ζk(2 + 2s)
∆
−1/2
ψ

ζk(1 + s)

ζk(1)
(3.10)

in which the left hand side converges absolutely.

3.4. Representations of G. Let π be an irreducible representation of G. Define
a compact open subgroup J ⩽ G in the following two cases:

• if k is non-archimedean, take for J ⩽ G the image of the unit group R× of
the chosen maximal order R ⊆ B;

• if k is real and B is non-split, set J := G.

In either case, set vol(J) :=
∫
g∈G 1J(g) dg and eJ := vol(J)−11J ∈ C∞c (G).
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3.4.1. Hecke kernels and theta kernels. Assume that k is non-archimedean. For
y ∈ k×, the normalized Hecke kernel Ty ∈ C∞c (J\G/J) is defined to be the element
with the property that |y|−1 vol(J)Ty is the characteristic function of the image in
G of the subset {b ∈ R : |nr(b)| = |y|} of B×. For example, if y ∈ o×, then Ty = eJ .

Lemma. Let y ∈ k×, g ∈ G. Choose g̃ ∈ B× with image g. Then

ρWeil(a(y))ϕ
0(nr(g̃)−1, g̃) = |y|ϕ0(y nr(g̃)−1, g̃) = vol(J)Ty(g)

where ϕ0 ∈ Ω is the distinguished element (§3.2.6).

Proof. We must verify that

|y|−1 vol(J)Ty(g) =

∫
z∈k× 1R(zg̃)1o×(y nr(zg̃)

−1) dz|z|∫
z∈k× 1o×(z)

dz
|z|

. (3.11)

Let g ∈ G. The right hand side of (3.11) is independent of g̃, and both sides
take values in {0, 1}. The right hand side of (3.11) is nonzero iff its integrand is
nonzero for some z ∈ k×, i.e., iff for some z ∈ k× the element b := zg̃ lies in R and
|nr(b)| = |y|, i.e., iff the left hand side of (3.11) is nonzero.

□

3.4.2. Hecke functionals and standard L-factors. Continue to assume that k is
non-archimedean. Recall that π is unramified if the space πJ of J-invariant vectors
in π is nonzero; it is known then that dim(πJ) = 1.

Suppose for remainder of §3.4.2 that π is unramified. There is then a unique func-
tional λπ : C∞c (J\G/J) → C so that π(T )v = λπ(T )v for all T ∈ C∞c (J\G/J), v ∈
πJ . We may evaluate this functional on the elements Ty attached above to y ∈ k×:

• If B is split, then there is a unique unordered pair {α, β} of complex num-
bers (the Satake parameters) satisfying αβ = 1 so that λπ(Ty) = 0 unless
|y| = q−n with n ⩾ 0, in which case (see, e.g., [5, §4.6])

λπ(Ty) = |y|1/2
∑

i,j∈Z⩾0:i+j=n

αiβj = 1o×(y)|y|1/2
αn+1 − βn+1

α− β
. (3.12)

• If B is non-split, then there is a unique unramified quadratic character η
of k× so that λπ(Ty) = |y|η(y).

The standard L-factor is then the meromorphic function defined for s ∈ C by

L(π, s) :=

{
(1− αq−s)−1(1− βq−s)−1 if B is split,

(1− η(ϖ)q−s−1/2)−1 if B is non-split.

3.4.3. The local Jacquet–Langlands correspondence. The Jacquet–Langlands lift
πJL of π is an irreducible representation of PGL2(k) attached to π. The following
properties of the association π 7→ πJL are relevant for us:

• πJL is generic if (and only if) either
– B is non-split, or
– B is split and dim(π) > 1.

• If B is split, then πJL corresponds to π under the isomorphism G ∼=
PGL2(k). In particular, if π is unramified, then so is πJL, and Satake
parameters (see §3.3, §3.4.2) are preserved.
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Assume now that that k is non-archimedean, that B is split, that π is unramified,
and that dim(π) > 1. Then πJL is generic and unramified. Let W 0

π : k× → C
denote the function attached to πJL in §3.3. By (3.9) and (3.12),

W 0
π (y) = λπ(Ty). (3.13)

3.4.4. Local integrals. Assume first that k is non-archimedean, that π is unrami-
fied, and that π is unitary. Retain the notation of §3.4.2.

Lemma 1. Suppose that B is split and that dim(π) > 1.

(i) |α|, |β| < q1/2. In particular, L(π, 12 ) is finite.

(ii) Let ϕ1, ϕ2 belong to the line Cϕ0 spanned by the distinguished element ϕ0 ∈
Ω. Let v1, v2 ∈ πJ . Then the identity∫
g∈G

⟨Ad(g)ϕ1, ϕ2⟩⟨gv1, v2⟩ dg =
L(π, 12 )

ζk(2)
vol(J)⟨ϕ1, ϕ2⟩⟨v1, v2⟩ (3.14)

holds, with the left hand side converging absolutely.

Proof. For (i), see [5, Thm 4.6.7]. For (ii), the convergence follows from §3.1.6. Let
{α, β} denote the Satake parameters of π and set t1 := αq−1/2, t2 := βq−1/2, so
that L(π, 12 )

−1 = (1− t1)(1− t2). The Macdonald formula [5, Thm 4.6.6] says that
⟨gv1, v2⟩ = (u1t

m
1 + u2t

m
2 )⟨v1, v2⟩, where

u1 :=
1

1 + q−1
1− q−1β/α

1− β/α
, u2 :=

1

1 + q−1
1− q−1α/β

1− α/β
.

By the Cartan decomposition and Lemma 2 of §3.2.6, we obtain∫
g∈G

⟨Ad(g)ϕ1, ϕ2⟩ dg⟨gv1, v2⟩ = vol(J)⟨ϕ1, ϕ2⟩⟨v1, v2⟩Σ,

where Σ :=
∑
i=1,2

∑
m⩾0(1 + 1m>0q

−1)tmi . We compute that
∑
i=1,2 ui(1 +

q−1ti)(1 − ti)
−1 = L(π, 12 )Σ

′ with Σ′ :=
∑
i=1,2 ui(1 + q−1ti)(1 − ti′)

−1, {i, i′} =

{1, 2}. Direct calculation gives Σ′ = ζk(2)
−1, as required. □

Suppose now that B is non-split, so that π is the one-dimensional representation
corresponding to the character G ∋ g 7→ η(nr(g)) ∈ {±1}, as in §3.4.2. Let v1, v2 ∈
π. Recalling that [G : J ] = 2, we have∫

g∈G
⟨Ad(g)eJ , eJ⟩L2(G)⟨gv1, v2⟩ dg = ⟨v1, v2⟩ ·

{
0 if η is nontrivial,

2 if η is trivial.
(3.15)

Suppose, finally, that k ∼= R, that B is non-split, and that π is trivial. For
v1, v2 ∈ π, one then has∫

g∈G
⟨Ad(g)eJ , eJ⟩L2(G)⟨gv1, v2⟩ dg = ⟨v1, v2⟩. (3.16)

4. Global preliminaries

In this section, we collect those preliminaries for the proof of Theorem 4 whose
discussion makes sense independently of that proof.

Let F be a number field with adele ring A, let B be a quaternion algebra over
F , and let ψ be a nontrivial unitary character of A/F .

4.1. Generalities.
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4.1.1. Notation. We denote by OF , or simply O, the ring of integers in F . We
denote by p a place of F , finite or infinite. A subscripted p denotes completion;
for example, Op denotes the ring of integers of Fp if p is finite. For a finite set
of places S, a subscripted S denotes a product taken over S, such as in FS :=∏

p∈S Fp, BS :=
∏

p∈S Bp.

The character ψ factors as ψ(x) =
∏
ψp(xp), where ψp is a nontrivial unitary

character of Fp.
For a place p, let ζp := ζFp

denote the local Euler factor. Let ξF (s) :=
∏
ζp(s)

denote the Dedekind zeta function (absolutely convergent for Re(s) > 1) and
ξ∗F (1) := ress→1 ξF (s) its residue. For a finite set S of places that contains the

infinite places, let ζ
(S)
F (s) :=

∏
p∈S ζp(s) denote the partial Dedekind zeta function.

4.1.2. Groups. For an algebraic F -group G, we write G := G(F ), Gp := G(Fp),
GA := G(A), GS := G(FS) =

∏
p∈S Gp, [G] := G\GA. This notation applies to

the F -group PB× given by PB×(A) := (B ⊗F A)×/A× and also to the F -groups
PGL2, SL2. We similarly abbreviate [Mp2] := SL2(F )\Mp2(A) (see §4.4.1).

4.1.3. Measures. When G is semisimple, we equip GA and [G] with Tamagawa
measures. Then vol([SL2]) = 1 and vol([PGL2]) = vol([PB×]) = 2. We denote by
⟨, ⟩G the corresponding inner product on L2([G]), omitting the subscripted G if it
is clear by context.

For each place p, the character ψp induces (via the recipe of §3.1.2) a Haar

measure on Fp, Bp, F
×
p /F

×2
p , PB×p ; we equip A, BA, A×/A×2 and PB×A with the

corresponding restricted product measures, denoted similarly. This defines the
Tamagawa measure on PB×A . The quotient measures on A/F and BA/B are then

probability measures. We likewise equip finite products such as FS or PB×S with
product measures.

We equip A× with the regularized product of the measures constructed in §3.1.2:
for a factorizable function f =

∏
fp ∈ C∞c (A×) for which fp = 1O×p for almost all

finite primes p, we set∫
y∈A×

f(y)
dy

|y|
:=

1

ξ∗F (1)

∏
p

ζp(1)

∫
y∈F×p

fp(y)
dy

|y|
.

We thereby obtain a quotient Haar dy
|y| on A×/F× whose pushforward under |.| :

A×/F× → R×+ is the standard Haar measure dt
|t| on R×+, where dt denotes Lebesgue

measure.
The quotient measure on the discrete group F×/F×2 compatible with the squar-

ing map is half the counting measure, i.e., for finitely-supported f : F× → C, one
has

∑
x∈F× f(x) = 1

2

∑
y∈F×/F×2(

∑
z∈F× f(yz

2)). On A×/F×A×2, we take the

quotient measure d×2 y induced by the exact sequence 1 → F×/F×2 → A×/A×2 →
A×/F×A×2 → 1, where F×/F×2 is equipped with half the counting measure. Thus
for f ∈ Cc(A×/A×2),∫

y∈A×/F×A×2

1

2

∑
a∈F×/F×2

f(ay) d×2 y =

∫
A×/A×2

f. (4.1)

By decomposing the Haar on A× in two ways, one finds for f ∈ Cc(A×/F×) that∫
A×/F× f =

∫
x∈A×/F×A×2

∫
y∈A×/F× f(xy

2) dy|y| d
×
2 s; moreover, vol(A×/F×A×2) = 2.
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Finally, for f ∈ C∞c ([PGL2]),∫
[PGL2]

f =

∫
y∈A×/F×A×2

∫
s∈[SL2]

f(sa(y)) ds d×2 y. (4.2)

4.1.4. The Ξ-function. Fix a maximal compact subgroup K =
∏
Kp ⩽ PB×A . Let

Ξ : PB×A → C be the product Ξ(g) :=
∏

Ξp(gp) of the functions Ξp on PB×p attached
in §3.1.5 to the factors Kp.

4.1.5. Conventions. A cusp form is a smooth vector in the Hilbert space L2
cusp([G])

of square-integrable cuspidal functions. A cuspidal automorphic representation π of
GA is the space of smooth vectors in an irreducible subrepresentation of L2

cusp([G]).

4.2. Automorphic forms on PGL2.

4.2.1. Fourier expansions. Let φ : [PGL2] → C be a smooth function. It admits
the Fourier expansion φ(n(x)a(y)) = cφ(y)+

∑
τ∈F× ψ(τx)Wφ(τy), where cφ(y) :=∫

x∈A/F φ(n(x)a(y)) dx denotes the constant term and

Wφ(y) :=

∫
x∈A/F

ψ(−x)φ(n(x)a(y)) dx (4.3)

denotes the (diagonal restriction of) the Whittaker function. The upper-triangular
Borel subgroup of PGL2(A) has dense image in [PGL2], so φ is determined by the
values φ(n(x)a(y)) for x ∈ A, y ∈ A×. Recall that φ is cuspidal if cφ = 0; in that
case, φ is determined by Wφ.

4.2.2. Kirillov model. Let π ⊆ L2([PGL2]) be a cuspidal automorphic repre-
sentation; it is (the smooth completion of) a restricted tensor product ⊗πp,
where πp is a generic for every p and unramified for almost all finite p. Let
K(π, ψ) := {Wφ : φ ∈ π}. The natural map π → K(π, ψ) is a linear isomor-
phism under which the pure tensors in π correspond to the factorizable functions
W (y) =

∏
Wp(yp), whereWp belongs to the local Kirillov model K(πp, ψp) and sat-

isfiesWp =W 0
πp

(see §3.4.3) for almost all finite p. The following residue calculation

is standard and may be derived from, for instance, [25, Lem 2.2.3].

Lemma. Let φ ∈ π. The integral I(s) :=
∫
y∈A× |Wφ(y)|2|y|s dy|y| converges absolutely

for complex numbers s with positive real part, extends to a meromorphic function
on the complex plane, and satisfies

2 ress→0 I(s) = ∥φ∥2. (4.4)

4.2.3. Adjoint L-function. For π, S as in the lemma of §4.2.2, the partial adjoint
L-function is defined for Re(s) > 1 by the absolutely-convergent Euler product
L(S)(adπ, s) :=

∏
p/∈S L(adπp, s); it continues meromorphically to the complex

plane, and is holomorphic for (at least) Re(s) ⩾ 1 (see [10]).

4.3. Automorphic forms on PB×.
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4.3.1. Jacquet–Langlands lifts. Let π = ⊗πp ⊆ L2([PB×]) be a cuspidal automor-
phic representation with dim(π) > 1. By [40, Prop 4],

dim(πp) > 1 for any prime p at which B splits. (4.5)

The Jacquet–Langlands lift πJL = ⊗πJL,p ⊆ L2([PGL2]) is the unique cuspidal
automorphic representation for which πJL,p = (πp)JL for each place p. If p is
a finite prime at which B splits and for which πp is unramified, then (πJL)p is
unramified. The association π 7→ πJL is injective.

4.3.2. The pretrace formula. Assume that B is non-split, so that [PB×] is compact.
Fix a maximal compact subgroup K of PB×A . The pretrace formula asserts that for

f ∈ C∞c (PB×A ) and x ∈ PB×A ,∑
π

∑
φ

φ(x)π(f)φ(x) =
∑

γ∈PB×

f(x−1γx), (4.6)

where π traverses the irreducible subrepresentations of L2([PB×]) and φ traverses
an orthonormal basis B(π) of π consisting of K-isotypic vectors. Only finitely many
summands on the right hand side of (4.6) are nonzero, while the condition on B(π)
implies that the left hand side of (4.6) converges absolutely, or indeed, rapidly: Let
C(π) :=

∏
p C((πp)JL) ∈ R⩾1 denote the analytic conductor of π (see, e.g., [25,

§3.1.8, §4.1.4]). By (e.g.) the proof of [26, Thm 9.1], one has for each A ⩾ 0∑
π

C(π)A
∑
φ

|φ(x)π(f)φ(x)| <∞. (4.7)

Note also that there exists A0 > 3 so that (see, e.g., [25, (2.15)]).∑
π

C(π)−A0 <∞ (4.8)

Let S be a set of places containing the infinite ones. Let R ⊆ B be a maximal
order. For each p /∈ S, let Jp ⩽ PB×p denote the image of R×p , as in §3.4, and set

J :=
∏

p/∈S Jp. Suppose that f = fS ⊗ (⊗p/∈STyp) for some fS ∈ C∞c (PB×S ) and

y ∈ A×, where Typ is the Hecke kernel as defined in §3.4.1 relative to Jp. The
formula (4.6) then specializes to∑

π

(
∑
φ

φ(x)π(fS)φ(x))
∏
p/∈S

λπp
(Typ) =

∑
γ∈PB×

fS(x
−1
S γxS)

∏
p/∈S

Typ(x
−1
p γxp),

(4.9)
where π ⊆ L2([PB×]) now traverses the subrepresentations that are unramified out-
side S (i.e., that contain a nonzero J-fixed vector) and φ traverses an orthonormal
basis of K-isotypic vectors for the J-fixed subspace πJ of π.

4.3.3. L-functions. Let π ⊆ L2([PB×]) be a cuspidal automorphic representation
with dim(π) > 1. Let S be a finite set of places containing all infinite places as well
as any places at which either B or π ramifies.

The partial standard L-function is defined for Re(s) > 1 by the absolutely-
convergent Euler product L(S)(π, s) :=

∏
p/∈S L(πp, s); it continues meromorphically

to the complex plane, and is holomorphic for (at least) Re(s) ⩾ 1/2 (see, e.g., [5,
§3.5]).

Set L(S)(adπ, s) := L(S)(adπJL, s) (see §4.2.3). By [12] (cf. [3, §2.9]), one has

C(π)−ε ≪ε L
(S)(adπ, 1) ≪ε C(π)

ε for each ε > 0. (4.10)



24 PAUL D. NELSON

4.4. Theta functions.

4.4.1. Metaplectic group. Let Mp2(A) denote the metaplectic double cover of

SL2(A); it fits into a short exact sequence 1 → µ2 → Mp2(A)
pr−→ SL2(A). We

may identify it with SL2(A) × µ2, with the group law given by (s1, ζ1)(s2, ζ2) =
(s1s2, ζ1ζ2c(s1, s2)), where c is the product of the cocycles from §4.4.1. We identify
SL2(F ) with its image under the unique splitting SL2(F ) ↪→ Mp2(A).

We may similarly define Mp2(FS) as a double cover of SL2(FS) for any collection
S of places of F .

4.4.2. Quadratic spaces. We define quadratic spaces V over F as in §3.2.1. The
relevant examples are still V = B,B0, F . We equip VA with the (ψ, bV )-self dual
measure µV . That measure is the product of the measures µVp

on the local spaces
Vp attached to ψp, and is independent of ψ: it assigns volume one to a fundamental
domain for VA/V .

4.4.3. Weil representation. For a quadratic space V over F , the Schwartz–Bruhat
space S(VA) factors as the (completed) restricted tensor product S(VA) = ⊗S(Vp).
The Weil representation ρψ,VWeil : Mp2(A)×O(VA) → GL(S(VA)) is given by ρψ,VWeil =

⊗ρψp,Vp

Weil in the evident sense.

We may similarly define a Weil representation ρψ,VWeil : Mp2(FS) × O(VS) →
GL(S(VS)) for a finite set S of places of F .

4.4.4. Theta kernels. Let V be a quadratic space over F . For ϕ ∈ S(VA),
s ∈ Mp2(A) and g ∈ O(VA), set θψ(ϕ)(s, g) :=

∑
x∈V ρ

ψ,V
Weil(s, g)ϕ(x). The sum

converges absolutely and defines a smooth function θψ(ϕ) : [Mp2] × [O(V )] → C.
We employ notation such as θψ(ϕ; s, g) := θψ(ϕ)(s, g). Observe that

θψ(ϕ; ss
′, gg′) = θψ(ρ

ψ,V
Weil(s

′, g′)ϕ; s, g) (4.11)

4.4.5. Elementary theta functions. Let V = F , regarded as a quadratic subspace
of B as in §3.2.1. In that case, we abbreviate O1(F ) := O(V ) ∼= {±1}. For
ϕ ∈ S(VA) = S(A), we denote also by θψ(ϕ) the elementary theta function on
[Mp2] obtained by restricting to the first factor of the theta kernel defined in §4.4.4,
thus θψ(ϕ)(s) := θψ(ϕ)(s, 1) =

∑
x∈F ρ

ψ,F
Weil(s)ϕ(x). By (4.11),

ρreg(s)θψ(ϕ) = θψ(ρ
ψ,F
Weil(s)ϕ) for s ∈ Mp2(A). (4.12)

The O1(F )-invariance of the theta kernel says that for ϕ ∈ S(A),

θψ(ϕ) = θψ(ϕ−) with ϕ−(x) := ϕ(−x). (4.13)

4.4.6. Ternary theta lifts. Suppose V = B0. Given Ψ : [PB×] → C and ϕ ∈
S(B0

A) and s ∈ Mp2(A), set θψ(ϕ,Ψ; s) :=
∫
g∈[PB×]

Ψ(g)θψ(ϕ; s,Ad(g)) dg, where

Ad : PB×A
∼=−→ SO(B0

A) is the isomorphism induced by the notation of §2. If Ψ
is a cusp form, then the integral converges absolutely and defines a cusp form
θψ(ϕ,Ψ) : [Mp2] → C. By (4.11),

ρreg(s)θψ(ϕ,Ψ) = θψ(ρ
ψ,B0

Weil (s)ϕ,Ψ) for s ∈ Mp2(A), (4.14)

θψ(Ad(g)ϕ, ρreg(g)Ψ) = θψ(ϕ,Ψ) for g ∈ PB×A . (4.15)
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4.4.7. Factorization. If the quadratic space V decomposes as the direct sum V ′⊕
V ′′ of quadratic subspaces, then the factorization of the Weil representation (§3.2.4)
implies the factorization of theta functions: for g = g′ × g′′ ∈ O(V ′A) × O(V ′′A ) ⩽
O(VA) and ϕ = ϕ′ ⊗ ϕ′′ ∈ S(VA) with ϕ′ ∈ S(V ′A), ϕ′′ ∈ S(V ′′A ) (see §3.2.4),

θψ(ϕ; s, g) = θψ(ϕ
′; s, g′)θψ(ϕ

′′; s, g′′). (4.16)

With ϕ′− as in (4.13) and notation as in §2, one has

Ad(g)ϕ = ϕ′ ⊗Ad(g)ϕ′′ (4.17)

Sϕ =
1

2
(ϕ′ + ϕ′−)⊗ ϕ′′. (4.18)

4.5. Equidistribution of products of pairs of elementary theta functions.
The purpose of this section is to recall and apply some results from [33]. Let
τ1, τ2 ∈ F×. Throughout this section, we regard ψ, τ1, τ2, F,B as fixed: implied
constants may depend upon them without explicit mention. We assume also (for
technical convenience) that B is non-split.

4.5.1. Some asymptotic notation. Given a topological vector space S, we adopt
the convention (similar to “big O notation”) of denoting by C(ϕ) any quantity
depending continuously upon ϕ ∈ S; the continuity is assumed uniform in all
auxiliary parameters except those explicitly labelled “fixed.” The space S itself
is always regarded as fixed, of course. This convention applies in particular to
Schwartz–Bruhat spaces of finite-dimensional vector spaces over local fields, over
finite products of local fields, or over adele rings.

Similarly to the “ε-convention” of analytic number theory, we allow the precise
meaning of C(ϕ) to change from one occurrence to the next. When we specif-
ically wish to distinguish between several such quantities, we use the notation
C′(ϕ), C′′(ϕ), and so on.

For example, let V be a vector space over F (always assumed finite-dimensional).

Let F̂ denote the ring of finite adeles, so that A = F∞ × F̂ with F∞ :=
∏

p|∞ Fp.

Similarly, write VA = V∞ × V̂ . The Schwartz–Bruhat space S(VA) factors as the

algebraic tensor product S(V∞)⊗S(V̂ ). Suppose given some quantities a(ϕ; t1, t2)
and b(ϕ; t1, t2) depending upon ϕ ∈ S(VA) and some auxiliary parameters t1, t2.
The notation

a(ϕ; t1, t2) ≪ b(ϕ; t1, t2)C(ϕ) for fixed t2 (4.19)

means that for each t2 and each ϕf ∈ S(V̂ ), there is a finite collection P of polyno-
mials on V∞ and a finite collection D of translation-invariant differential operators
on V∞ (thus D consists of linear combinations of monomials ∂

∂xi1
· · · ∂

∂xin
with re-

spect to some coordinates xj : V∞ → R) so that for all ϕ∞ ∈ S(V∞) and all
t1,

|a(ϕ∞ ⊗ ϕf ; t1, t2)| ⩽ |b(ϕ∞ ⊗ ϕf ; t1, t2)|
∑
P∈P

∑
D∈D

∥PDϕ∞∥L∞(V∞).

One could just as well write “the functional S(VA) ∋ ϕ 7→ a(ϕ; t1, t2)/b(ϕ; t1, t2) is
defined and continuous, uniformly in t1.”
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4.5.2. Simple estimates for lattice sums.

Lemma 1. Let n ∈ Z⩾0. Let A ⩾ 0 and t0 > 0 be fixed. For each ϕ ∈ S(Rn) and
t > t0, one has

∑
v∈Zn−{0} |ϕ(tv)| ≪ |t|−AC(ϕ).

Proof. The left hand side of the required estimate is bounded by

C|t|−A sup
x∈Rn

|x|n+1+A|ϕ(x)|

with C := |t0|−(n+1)
∑
v∈Zn−{0} |v|−(n+1+A) <∞. □

Lemma 2. Let V be a vector space over F . Let A ⩾ 0 and t0 > 0 be fixed. For
ϕ ∈ S(VA) and y ∈ A× with |y| > t0, one has

∑
v∈V−{0} |ϕ(yv)| ≪ |y|−AC(ϕ).

Proof. Let A(1) := {y ∈ A× : |y| = 1} denote the subgroup of norm one ideles.
By the compactness of A(1)/F× and the continuity of the dilation action of A×
on S(VA), it suffices to consider the case that yp = 1 for all finite p and yp = t

for all infinite p, where t ∈ R×+ satisfies t > t1 := t
1/[F :Q]
0 . Each ϕf ∈ S(V̂ ) is

bounded and satisfies supp(ϕf ) ∩ V ⊆ L for some lattice L ⩽ V , so it suffices to
show that for fixed A ⩾ 0, fixed L ⩽ V , all ϕ ∈ S(V∞) and all t > t1, one has∑
v∈L−{0} |ϕ(tv)| = O(|t|−AC(ϕ)). By choosing a Z-basis of L, we reduce to Lemma

1. □

4.5.3. Simple estimates for theta functions. Recall that the Iwasawa decomposition
asserts that each s ∈ SL2(A) may be written in the form s = n(x)t(y)k, where
x ∈ A, y ∈ A× and k belongs to the standard maximal compact subgroup of SL2(A).
The decomposition is not unique, but the quantities x and |y| depend only upon s.

We define ht : [SL2] → R>0 by ht(g) := maxγ∈SL2(F ) htA(γg), where htA :
SL2(A) → R>0 is defined with respect to the Iwasawa decomposition s = n(x)t(y)k
by htA(s) := |y|1/2. One has

∫
[SL2]

ht1−ε <∞ for ε > 0. Reduction theory says that

the image of ht is bounded from below by some c > 0 depending only upon F . We
extend ht via pullback to a map [Mp2] → R>0.

Recall that the nontrivial unitary character ψ of A/F is regarded as fixed.

Lemma 1. Let A ⩾ 0 be fixed. Let Ψ ∈ L1([PB×]) with ⟨Ψ, 1⟩ = 0. Let ϕ ∈ S(B0
A).

For s ∈ Mp2(A), one has θψ(ϕ,Ψ; s) ≪ ht(s)−AC(ϕ)∥Ψ∥L1 .

Proof. Since Ψ has mean zero,

θψ(ϕ,Ψ; s) =

∫
g∈[PB×]

Ψ(g)
∑

v∈V−{0}

ρψ,VWeil(s,Ad(g))ϕ(v) dg. (4.20)

By the Iwasawa decomposition and reduction theory, we may assume that s =
n(x)t(y)k with |y| ≫ 1. Since B is non-split, we may fix a compact subset U of
PB×A containing a fundamental domain for [PB×]. Then

|θψ(ϕ,Ψ; s)| ⩽ ∥Ψ∥L1 |y|3/2 sup
g∈U

∑
v∈B0−{0}

|ρψ,B
0

Weil (k,Ad(g))ϕ(yv)|.

Since the Weil representation is continuous [48, §39], we may reduce to the case
k = 1 and g = 1, in which the required estimate follows from Lemma 2 of §4.5.2. □

Lemma 2. For ϕ ∈ S(A) and s ∈ Mp2(A), one has θψ(ϕ; s) ≪ ht(s)1/4C(ϕ).
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Proof. We argue as in the proof of Lemma 1, but take into account the contribution
from 0 ∈ F to the definition of θψ(ϕ). □

4.5.4. Main estimate: the case of pure tensors.

Lemma. Let ϕ′1, ϕ
′
2 ∈ S(A) and ϕ′′1 , ϕ

′′
2 ∈ S(B0

A). Let Ψ1,Ψ2 : [PB×] → C be
integrable functions of mean zero. Let τ1, τ2 ∈ F× be fixed. Abbreviate θi :=
θψτi (ϕ′i) and hi := θψτi (ϕ′′i ,Ψi). Then for all s ∈ Mp2(A),

⟨θ1 · ρreg(s)h1, θ2 · ρreg(s)h2⟩ = ⟨θ1, θ2⟩⟨h1, h2⟩+O

Ξ(s)
∏
i=1,2

C(ϕ′i)C(ϕ′′i )∥Ψi∥L1

 .

Proof. The main result of [33] gives an estimate essentially of the required shape,
but instead with the error term Ξ(s)S(ϕ′1)S(ϕ′2)SX(h1h2), where S,SX are the
adelic Sobolev norms defined in loc. cit. and [25, §2]. By the cuspidality of h1, h2 and
axioms (S3b) and (S4e) of [25], we may replace the expression SX(h1h2) first with
SX(h1)SX(h2) and then with S(h1)S(h2). Our task thereby reduces to showing for
i = 1, 2 that S(ϕ′i) ≪ C(ϕ′i) and S(hi) ≪ C(ϕ′′i )∥Ψi∥L1 . The first of these estimates,
i.e., that the norms S are continuous, follows readily from the definitions of those
norms. The second estimate follows similarly, using Lemma 1 of §4.5.3. □

4.5.5. Factorization. Let V ′, V ′′ be vector spaces over F and V := V ′ ⊕ V ′′.

Lemma. Let ℓ : S(V ′A)⊗S(V ′′A ) → C be an algebraic linear functional on the algebraic
tensor product of Schwartz–Bruhat spaces satisfying an estimate of the form

ℓ(ϕ′ ⊗ ϕ′′) ≪ C′(ϕ′)C′′(ϕ′′)
on pure tensors. Then ℓ extends to a continuous functional ℓ : S(VA) → C satisfying

ℓ(ϕ) ≪ C(ϕ)
for all ϕ ∈ S(VA), where C depends only upon C′ and C′′.

Proof. This is essentially the Schwartz kernel theorem, as extended by Bruhat [4,
§5], and follows from a standard “square-root of a partition of unity” argument. □

4.5.6. Main estimate: the general case. Temporarily denote by A0 the space of
integrable functions Ψ : [PB×] → C of mean zero. Let Eτ1,τ2 : S(BA) ⊗ S(BA) ⊗
A0 ⊗ A0 → C denote the sesquilinear form given for ϕi = ϕ′i ⊗ ϕ′′i ∈ S(BA) with
ϕ′1, ϕ

′
2 ∈ S(A), ϕ′′1 , ϕ′′2 ∈ S(B0

A) by

Eτ1,τ2(ϕ1, ϕ2,Ψ1,Ψ2) := ⟨θ1h1, θ2h2⟩ − ⟨θ1, θ2⟩⟨h1, h2⟩,

where we abbreviate θi := θτi(ϕ
′
i) and hi := θτi(ϕ

′′
i ,Ψi). (The definition makes

sense: a priori estimates as in §4.5.3 and the density of S(A) ⊗ S(B0
A) in S(BA)

allow us to extend Eτ1,τ2 continuously from its initial domain.)

Proposition 1. For ϕ1, ϕ2 ∈ S(BA),Ψ1,Ψ2 ∈ A0 and s ∈ Mp2(A), one has with

ρτ0(s) := ρψ
τ ,B0

Weil (s) the estimate

Eτ1,τ2((1⊗ ρτ10 (s))ϕ1, (1⊗ ρτ20 (s))ϕ2,Ψ1,Ψ2) ≪ Ξ(s)
∏
j=1,2

C(ϕj)∥Ψj∥L1 . (4.21)

The implied constant and the uniformity of the continuity of C(ϕj) depend at most
upon ψ, τ1, τ2, F,B. The operator 1⊗ ρτ10 (s) is defined as in §3.2.4.
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Proof. The lemma of §4.5.5 reduces the general case of Proposition 1 to the special
case in which ϕi = ϕ′i⊗ϕ′′i for i = 1, 2, which follows from the lemma of §4.5.4 upon
recalling from (4.14) that θψτ intertwines ρτ0 with ρreg. □

4.5.7. Invariance properties. We record these for later use.

Lemma. For g1, g2 ∈ PB×A and s ∈ Mp2(A), one has

Eτ1,τ2(ϕ1, ϕ2,Ψ1,Ψ2) = Eτ1,τ2(Sϕ1, ϕ2,Ψ1,Ψ2)

= Eτ1,τ2(ϕ1,Sϕ2,Ψ1,Ψ2)

= Eτ1,τ2(Ad(g1)ϕ1,Ad(g2)ϕ2, ρreg(g1)Ψ1, ρreg(g2)Ψ2)

= Eτ1,τ2(ρ
ψτ1 ,B
Weil (s)ϕ1, ρ

ψτ2 ,B
Weil (s)ϕ2,Ψ1,Ψ2).

Proof. The first two identities follow from (4.18) and (4.13), the remaining from
(4.12), (4.14), (4.15), (4.17), (4.18) and the translation invariance of the Petersson
inner product. □

4.6. Simillitude theta functions.

4.6.1. Weil representation. For each place p of F , let Ωp denote the representation
of PGL2(Fp)×PGO(Bp) attached as in §3.2.5 to the tuple (Fp, Bp, ψp). Let Ω de-
note the restricted tensor product of the spaces Ωp with respect to the distinguished
elements, which we denote now by ϕ0p ∈ Ωp. We may and shall identify Ω with the

space of functions ϕ : A× ×BA → C such that

• For each t ∈ A×, the function ϕ[t] : BA → C given by ϕ[t](x) := ϕ(t, x)
belongs to the Schwartz–Bruhat space S(BA);

• ϕ(z2t, x) = ϕ(t, zx) for all z, t ∈ A×, x ∈ BA.
• There is a compact subset C of A×/A×2 such that ϕ[t] = 0 for all t /∈ C
(i.e., for all t ∈ A× whose image in A×/A×2 lies outside C);

• There is an open subgroup U of A×/A×2 such that ϕ[tu] = ϕ[t] for all
t ∈ A×, u ∈ U .

We equip Ω with the invariant hermitian norm ∥.∥ obtained by tensoring those on
the factors Ωp, thus

∥ϕ∥2Ω :=

∫
t∈A×/A×2

|t|2
∫
x∈BA

|ϕ|2(t, x) dx d×2 t. (4.22)

The group PGL2(A)×PGO(BA) acts on Ω by the representation ρWeil obtained as
the restricted tensor product of those defined in §3.2.5. We define S : Ω → Ω and
(for g ∈ PB×A ) Ad(g) : Ω → Ω as in §3.2.5. Note that S does not preserve pure
tensors: for ϕ = ⊗ϕp ∈ Ω,

Sϕ(t, x) = (ϕ(t, x) + ϕ(t, x− tr(x)))/2,

⊗Sϕp(x, t) =
∏

(ϕ(tp, xp) + ϕ(tp, xp − tr(xp)))/2,

and in general, these are not the same. They do coincide if #{p : Sϕp ̸= ϕp} ⩽ 1.



QUANTUM VARIANCE ON QUATERNION ALGEBRAS, III 29

4.6.2. Theta functions. For ϕ ∈ Ω, s ∈ PGL2(A), g ∈ PGO(BA), set

Θ(ϕ; s, g) :=
1

2

∑
τ∈F×/F×2

∑
x∈B

ρWeil(s, g)ϕ(τ, x). (4.23)

The sum is well-defined, converges absolutely and defines a smooth function Θ(ϕ)
on [PGL2]× [PGO(B)]. For a cusp form Ψ : [PB×] → C and s ∈ PGL2(A), set

Θ(ϕ,Ψ; s) :=

∫
g∈[PB×]

Ψ(g)Θ(ϕ; s,Ad(g)) dg. (4.24)

The integral (together with similar integrals below) converges absolutely and defines
a cusp form Θ(ϕ,Ψ) : [PGL2] → C.

Remark. Θ(ϕ,Ψ) is not a theta lift in the traditional sense: the integral in its
definition is with respect to the orthogonal group of B0 rather than that of B.

4.6.3. Fourier expansion. Let ϕ ∈ Ω, and let Ψ : [PB×] → C be a cusp form.

Lemma. For x ∈ A, y ∈ A×, one has

Θ(ϕ,Ψ;n(x)a(y)) =
∑
τ∈F×

ψ(τx)W (Θ(ϕ,Ψ), τy)

where W (Θ(ϕ,Ψ), y) :=
∫
g∈[PB×]

Ψ(g)
∑
γ∈PB× |y|ϕ(y nr(γ)−1, g−1γg) dg.

Proof. By direct unfolding as in [40], one has for g ∈ PB×A that

Θ(ϕ, n(x)a(y); Ad(g)) =
1

2

∑
τ∈F×/F×2

|y|ϕ(τy, 0)

+
∑
τ∈F×

ψ(τx)W (Θ(ϕ),Ad(g), τy),

where W (Θ(ϕ),Ad(g), y) :=
∑
γ∈PB× |y|ϕ(y nr(γ)−1, g−1γg). We conclude by inte-

grating against Ψ. □

4.6.4. Restriction to SL2. Let ϕ,Ψ be as above.

Lemma. Let y ∈ A×. Suppose that ϕ[y] = ϕ′[y] ⊗ ϕ′′[y] for some ϕ′[y] ∈ S(A),
ϕ′′[y] ∈ S(B0

A). Then for s ∈ SL2(A),

Θ(ϕ,Ψ; sa(y)) =
1

2

∑
τ∈F×\F×2

|y|θψτ (ϕ′[τy]; s)θψτ (ϕ′′[τy],Ψ; s). (4.25)

Proof. We derive first using (4.23) that for g ∈ O(BA),

Θ(ϕ; sa(y), g) =
1

2

∑
τ∈F×\F×2

|y|θψτ (ϕ[τy]; s, g),

hence by (4.16) that for g ∈ O(B0
A),

Θ(ϕ; sa(y), g) =
1

2

∑
τ∈F×\F×2

|y|θψτ (ϕ′[τy]; s)θψτ (ϕ′′[τy]; s, g).

We integrate against Ψ to conclude. □
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4.6.5. Unfolding the inner product. Let ϕ1, ϕ2 ∈ Ω. Let Ψ1,Ψ2 : [PB×] → C be
cusp forms.

Lemma. Suppose that for each y ∈ A×, one has ϕi[y] = ϕ′i[y] ⊗ ϕ′′i [y] for some
ϕ′i[y] ∈ S(A), ϕ′′i [y] ∈ S(B0

A). Then the following identity holds, with both sides
converging absolutely:

⟨Θ(ϕ1,Ψ1),Θ(ϕ2,Ψ2)⟩PGL2

=

∫
y∈A×/F×A×2

|y|2 1

22

∑
τ1,τ2∈F×/F×2

⟨θ1h1, θ2h2⟩SL2
d×2 y,

(4.26)

θi := θψτi (ϕ′i[τiy]), hi := θψτi (ϕ′′i [τiy],Ψi). (4.27)

Proof. The left hand side is an inner product of cusp forms, hence convergent.
On the right hand side, we may replace the y-integral by a finite sum, since
the domain A×/F×A×2 is compact and the integrand is invariant under an open
subgroup. For individual y, the sum over τ1, τ2 has only finitely many nonzero
summands, each of which consists of an inner product whose convergence is
clear (see §4.5.3). The expansion (4.25) implies for y ∈ A×, s ∈ SL2(A) that
Θ(ϕi,Ψi, a(y)s) =

1
2

∑
τi∈F×/F×2 |y|θi(s)hi(s), so the required identity follows from

the formula (4.2) relating integrals over [PGL2] and [SL2]. □

Remark. In this paper, we consider several expressions shaped like the right hand
side of (4.26). On a first (or perhaps on any) reading, one should focus on the
contributions from y = τ1 = τ2 = 1; under some class number and unit group
restrictions, these turns out to be the relevant ones for our applications. (We
considered imposing such restrictions for the sake of presentation, but found that
doing so obfuscated rather than simplified.)

4.7. Inner product formulas.

4.7.1. Elementary theta functions. We recall part of [33, Thm 2].

Lemma. Suppose ϕ1, ϕ2 ∈ S(A) satisfy ϕ1(x) = ϕ1(−x), ϕ2(x) = ϕ2(−x). Let
τ1, τ2 ∈ F×. Set θ1 := θψτ1 (ϕ1), θ2 := θψτ1 (ϕ2). Then ⟨θ1, θ2⟩SL2 = 0 unless
τ1 = τ2, in which case ⟨θ1, θ2⟩SL2

= 2⟨ϕ1, ϕ2⟩L2(A).

4.7.2. Ternary theta lifts. As in [28, §12.3], we explicate Gan–Takeda [9, Thm 6.6]
(compare with [37, Prop 2.8 (i)]).

Lemma. Let π1, π2 ⊆ L2([PB×]) be cuspidal automorphic representations that are
not one-dimensional. Let Ψ1 ∈ π1,Ψ2 ∈ π2 and ϕ1, ϕ2 ∈ S(B0

A). Let τ ∈ F×. Set
hi := θψτ (ϕi,Ψi) for i = 1, 2.

(1) If π1 ̸= π2, then ⟨h1, h2⟩SL2 = 0.
(2) Suppose π1 = π2 =: π. Let S be a finite set of places of F that contains all

archimedean places, as well as any finite places at which B ramifies, and
that is sufficiently large in terms of Ψi, ϕi. Then ⟨h1, h2⟩SL2

equals

L(S)(π, 12 )

ζ
(S)
F (2)

∏
p/∈S

vol(Kp)

∫
g∈PB×S

⟨Ad(g)ϕ1, ϕ2⟩L2(B0
A)
⟨π(g)Ψ1,Ψ2⟩PB× dg (4.28)

with L(S)(π, 12 ) as in §4.3.3.
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4.7.3. Induction to Ω. We now combine the previous two lemmas and sum them
up. Temporarily denote by A0 the space of cusp forms Ψ : [PB×] → C that
are orthogonal to all one-dimensional representations. For τ1, τ2 ∈ F×, let m :
Ω⊗Ω⊗A0 ⊗A0 → C denote the sesquilinear form given for ϕ1, ϕ2 ∈ Ω admitting
factorizations ϕi[y] = ϕ′i[y]⊗ ϕ′′i [y] by

m(ϕ1, ϕ2,Ψ1,Ψ2) :=

∫
y∈A×/F×A×2

|y|2 1

22

∑
τ1,τ2∈F×/F×2

⟨θ1, θ2⟩⟨h1, h2⟩ d×2 y, (4.29)

with θi, hj as in (4.27). The relevance of m may be inferred from §4.6.5.
The definition makes sense: as in the proof of §4.6.5, the y-integral is really

a finite sum, and the sum over τ1, τ2 has only finitely many nonzero summands.
Each summand defines a sesquilinear form on S(A) ⊗ S(B0

A) ⊗ A0 that extends
continuously to S(BA)⊗A0 by the a priori estimates of §4.5.3.

Lemma. Let π1, π2 ⊆ L2([PB×]) be cuspidal automorphic representations that are
not one-dimensional. Let Ψ1 ∈ π1,Ψ2 ∈ π2. Let ϕ1, ϕ2 ∈ Ω.

(1) If π1 ̸= π2 then m(ϕ1, ϕ2,Ψ1,Ψ2) = 0.
(2) Suppose π1 = π2 =: π. Let S be a large enough finite set of places. Then

m(ϕ1, ϕ2,Ψ1,Ψ2) equals

L(S)(π, 12 )

ζ
(S)
F (2)

∏
p/∈S

vol(Kp)

∫
g∈PB×S

⟨Ad(g)Sϕ1,Sϕ2⟩Ω⟨π(g)Ψ1,Ψ2⟩PB× dg.

Proof. It suffices to consider the case that ϕ1, ϕ2 admit factorizations as in the
definition of m. By (4.13) and (4.18), we may assume thatSϕi = ϕi, or equivalently,
that ϕ′i(t, x) = ϕ′i(t,−x). By the lemmas of §4.7.1 and §4.7.2, we have ⟨θ1, θ2⟩ = 0
unless τ1 = τ2 and then ⟨h1, h2⟩ = 0 unless π1 = π2; in that case, the formulas from
those lemmas and the identities

⟨ϕ′1[yτ ], ϕ′2[yτ ]⟩L2(A)⟨Ad(g)ϕ′′1 [yτ ], ϕ
′′
2 [yτ ]⟩L2(B0

A)

= ⟨Ad(g)ϕ1[yτ ], ϕ2[yτ ]⟩L2(BA)

and (see (4.1), (4.22))∫
y∈A×/F×A×2

|y|2 1
2

∑
τ∈F×/F×2

⟨Ad(g)ϕ1[yτ ], ϕ2[yτ ]⟩L2(BA) d
×
2 y (4.30)

=

∫
y∈A×/A×2

|y|2⟨Ad(g)ϕ1[y], ϕ2[y]⟩L2(BA) d
×
2 y = ⟨Ad(g)ϕ1, ϕ2⟩Ω

combine to give the required conclusion. □

5. Estimates for general quantum variance sums

In this section, we introduce general families of quantum variance sums, propose
a candidate for their leading asymptotics, and state a general “estimate” comparing
the two.
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5.1. Notation. Let F be a number field with adele ring A. Fix a nontrivial unitary
character ψ of A/F . Let B be a non-split quaternion algebra over F . Fix a maximal
order R ⊆ B and a finite set S of places of F , containing all archimedean places as
well as any finite places at which B ramifies. Retain the (unsurprising) notation of
§4.1.

Since B is non-split, the quotient [PB×] = PB× \PB×A is compact, and so

L2([PB×]) is completely reducible. Let A♭ denote the set of irreducible subrep-
resentations of the Hilbert space L2([PB×]). For each π♭ ∈ A♭, let π ⩽ π♭ denote
the subspace of smooth vectors. Set A := {π : π♭ ∈ A♭}. Let A denote the algebraic
direct sum ⊕π∈Aπ, regarded as a pre-unitary representation of the group PB×A .

We introduce the following additional notation:

• K =
∏
Kp: a maximal compact subgroup of PB×A . For p /∈ S, we assume

that Kp ⩽ PB×p is the image of R×p .
• A0 ⩽ A: the orthogonal complement of the one-dimensional subrepresenta-
tions. (We had earlier, in §4.5 and §4.7.3, used the same symbol to denote
some larger spaces than what we call here A0. This abuse of notation
should introduce no confusion.)

• A0 := {π ∈ A : π ⊆ A0} = {π ∈ A : dim(π) > 1}, so that A0 = ⊕π∈A0
π.

• AS := {φ ∈ A : ρreg(k)φ = φ for all k ∈ Kp, p /∈ S},AS
0 := A0 ∩ AS : the

“unramified outside S” subspaces of A,A0.
• AS := {π ∈ A : π ∩ AS ̸= {0}}, AS0 := AS ∩ A0: the subsets consisting of
those π that are unramified outside S.

• B(V ), for V a K-invariant subspace of A: an orthonormal basis for the
closure of V that consists of K-isotypic elements of V .

Fix Haar measures on PB×S and [PB×]; we do not require any compatibility between

them. Because B is non-split, each π ∈ A0 is cuspidal. Let L(S)(π, s), L(S)(adπ, s)
be as in §4.3.3.

5.2. Key definitions. By (4.7), (4.8) and (4.10), the sums considered in the
definitions to follow converge absolutely.

5.2.1. The basic distributions. For π ∈ AS , define ωπ : C∞c (PB×S ) ⊗ AS → C by
ωπ(f,Ψ) :=

∑
φ∈B(π∩AS)⟨φ,Ψ · π(f)φ⟩. The definition is independent of the choice

of orthonormal basis.

Example. If π(f) = 0, then ωπ(f,Ψ) = 0. If π(f) is the orthogonal projector onto
a one-dimensional subspace Cφ of π with unit basis vector φ, then ωπ(f,Ψ) =
⟨φ,Ψφ⟩.

5.2.2. Quantum variance sums. For f ∈ C∞c (PB×S ), define the sesquilinear form
Vf : AS

0 ⊗AS
0 → C by

Vf (Ψ1,Ψ2) :=
∑
π∈AS

0

L(S)(adπ, 1)ωπ(f,Ψ1)ωπ(f,Ψ2).

5.2.3. Proposed limiting variance. For f ∈ C∞c (PB×S ), define the sesquilinear form
Mf : AS

0 ⊗ AS
0 → C by requiring for Ψ1 ∈ π1 ∈ AS0 ,Ψ2 ∈ π2 ∈ AS0 that

Mf (Ψ1,Ψ2) := 0 unless π1 = π2 =: π, in which case

Mf (Ψ1,Ψ2) := c3L
(S)(π, 12 )

∫
g∈PB×S

⟨Ad(g)Sf,Sf⟩L2(PB×S )⟨π(g)Ψ1,Ψ2⟩PB× dg
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where

c3 := ζ
(S)
F (2) vol([PB×])−1. (5.1)

The integral converges absolutely (see §3.1.6, §3.4.4).

5.2.4. Thickening PB× inside B. Fix, once and for all, a nonzero element WS ∈
C∞c (F×S ). For τ ∈ F×, define the linear map ♡τ : C∞c (PB×S ) → S(BS) by

♡τf(x) := WS(τ nr(x))

|τ nr(x)|S
1B×S

(x)f(pr(x)),

where pr : B×S → PB×S denotes the natural projection.

5.3. Statement of main result. The statement involves the metaplectic group
(§4.4.1) and the Weil representation (§4.4.3). For s ∈ Mp2(FS), we abbreviate

ρτ (s) := ρψ
τ ,B

Weil (s) and ρ
τ
0(s) := ρψ

τ ,B0

Weil (s); these operators act respectively on S(BS)
and S(B0

S). The operators 1⊗ρ
τi
0 (s) on S(BS) are defined using the decomposition

BS = FS ⊕B0
S , as in §3.2.4.

Theorem 4. There is a finite subset X of F× and a finite collection (ετ1,τ2)τ1,τ2∈X
of sesquilinear forms ετ1,τ2 : S(BS)⊗S(BS)⊗AS

0 ⊗AS
0 → C, depending only upon

F , ψ, S and WS, with the following properties:

(1) Relevance. For f ∈ C∞c (PB×S ), one has the following identity of sesquilin-
ear forms on AS

0 :

Vf = Mf +
∑

τ1,τ2∈X
ετ1,τ2(♡τ1f,♡τ2f, ·, ·). (5.2)

(2) O1(F )-invariance.

ετ1,τ2(Sϕ1, ϕ2,Ψ1,Ψ2) = ετ1,τ2(ϕ1, ϕ2,Ψ1,Ψ2),

ετ1,τ2(ϕ1,Sϕ2,Ψ1,Ψ2) = ετ1,τ2(ϕ1, ϕ2,Ψ1,Ψ2).

(3) SO(B0
S)-invariance. For g1, g2 ∈ PB×S ,

ετ1,τ2(Ad(g1)ϕ1,Ad(g2)ϕ2, ρreg(g1)Ψ1, ρreg(g2)Ψ2)

= ετ1,τ2(ϕ1, ϕ2,Ψ1,Ψ2).

(4) Metaplectic invariance. For s ∈ Mp2(FS),

ετ1,τ2(ρ
τ1(s)ϕ1, ρ

τ2(s)ϕ2,Ψ1,Ψ2) = ετ1,τ2(ϕ1, ϕ2,Ψ1,Ψ2).

(5) Main estimate. For s ∈ Mp2(FS),

ετ1,τ2((1⊗ ρτ10 (s))ϕ1, (1⊗ ρτ20 (s))ϕ2,Ψ1,Ψ2)

≪ Ξ(s)
∏
i=1,2

C(ϕi)∥Ψi∥L1 ,

where Ξ denotes the Harish–Chandra function (§4.1.4) and C(ϕi) denotes
a quantity that varies continuously with ϕi (see §4.5.1). The implied con-
stants and the uniformity in the continuity of C(.) depend at most upon
F,ψ, S,WS.

(6) Construction. ετ1,τ2 factors explicitly through the theta correspondence
in the sense of §5.4.9.

The proof of Theorem 4 occupies §5.4.
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Remark 1. In applications of Theorem 4, the crucial assertions are the relevance
and the main estimate. The SO(B0

S)-invariance may be employed to obtain quan-
titatively stronger estimates, the O1(F )-invariance and metaplectic invariance may
be computationally convenient (see [29]), and the construction may be useful for
further refinements and extensions.

Remark 2. The formulation of Theorem 4 is independent of the choice of measures
on PB×S and on [PB×].

Remark 3. Theorem 4 minus the “main estimate” is like a trace formula: Vf is a
sum over automorphic forms, Mf is the “identity” or “diagonal” contribution, and
the ετ1,τ2 are the “interesting” contributions which one often wishes to show are
small. One difference is that Vf has a quadrilinear (rather than bilinear) dependence
upon the automorphic forms φ.

Remark 4. Theorem 4 likely extends to the split case B = M2(F ) after incorpo-
rating contributions from the continuous spectrum into the definitions of §5.2 and
replacing ∥Ψi∥L1 with ∥ htAΨi∥L1 for some fixed large enough A > 0.

5.4. Proof of Theorem 4.

5.4.1. Measures. With a view to applications, we have formulated Theorem 4 in a
measure-independent fashion. For the proof, it is convenient to take on [PB×] the
Tamagawa measure, so that

c3 =
1

2
ζ
(S)
F (2), (5.3)

and to fix measures on PB×A ,PB
×
p and hence on PB×S =

∏
p∈S PB

×
p as in §4.1.3.

5.4.2. The ♡ operator: local. Suppose temporarily (for §5.4.2 only) that k is a
local field, ψ is a nontrivial unitary character of k, B is a quaternion algebra over
k, G := B×/k×, and W ∈ C∞c (k×). Recall from §3.2.5 the definition of Ω. We
define a linear map ♡ : C∞c (G) → Ω by

♡f(t, x) := W (tnr(x))

|tnr(x)|
1B×(x)f(x). (5.4)

(By abuse of notation, we write f(x) for the value taken by f at the image of x
under the natural projection B× → G.)

By inspecting the definitions, one has the identities of maps C∞c (G) → Ω

S♡ = ♡S, Ad(g)♡ = ♡Ad(g) (for g ∈ G).

By inspecting the definitions, one has for y ∈ k×, b ∈ B× that

ρWeil(a(y))♡f(nr(b)−1, b) = |y|♡f(y nr(b)−1, b) =W (y)f(b). (5.5)

By the formula (3.7) for ∥.∥Ω, one obtains

∥♡f∥Ω = ∥f∥L2(G) ∥W∥L2(k×,|x|−1 dx). (5.6)
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5.4.3. The ♡ operator: global. We revert to the global setting of §5. Let π ∈ AS0 .
Recall from §4.6.1 the definition of Ω. We define a linear map ♡ : C∞c (PB×S ) → Ω
by

♡f(t, x) := WS(tS nr(xS))

|tS nr(xS)|
1B×S

(xS)f(xS)
∏
p/∈S

vol(Kp)
−1ϕ0p(tp, xp),

where ϕ0p ∈ Ωp is defined with respect to Rp (see §3.2.6). This definition and that
of §5.2.4 are obviously similar; we record their precise relationship below in §5.4.9.

By (5.5) and the lemma of §3.4.1, one has for y ∈ A×, b ∈ B×A that

|y|♡f(y nr(b)−1, b) =WS(yS)f(bS)
∏
p/∈S

Typ(bp), (5.7)

with Typ as in §3.4.1. By combining (5.6) with Lemma 1 of §3.2.6, one obtains

∥♡f∥2Ω = ∥f∥2
L2(PB×S )

∫
t∈F×S

|WS |2(t)
dt

|t|
∏
p/∈S

vol(Rp)

vol(Kp)2
. (5.8)

Lemma. Let π ∈ AS0 . Let Ψ1,Ψ2 ∈ π be
∏

p/∈S Kp-invariant vectors. For f ∈
C∞c (PB×S ), the quantity m(♡f,♡f,Ψ1,Ψ2) (see §4.7.3) equals

c2L
(S)(π, 12 )

∫
g∈PB×S

⟨Ad(g)Sf,Sf⟩L2(PB×S )⟨π(g)Ψ1,Ψ2⟩PB× dg,

where

c2 :=
1

ζ
(S)
F (2)

∏
p/∈S

vol(Rp)

vol(Kp)

∫
y∈F×S

|WS |2(y)
dy

|y|
. (5.9)

Proof. By the lemma of §4.7.3, the polarization of (5.8) and the commutativity
♡Ad(g) = Ad(g)♡, the required identity holds if we replace S with some possibly
larger finite set of places S′ ⊇ S. To deduce the identity as written, we apply (3.14)
(using (4.5) to verify its hypotheses). □

5.4.4. A specific Eichler/Jacquet–Langlands lift. For π ∈ AS0 , let Φπ ∈ πJL de-
note the element of the Jacquet–Langlands lift of π having the Fourier expansion
Φπ(n(x)a(y)) =

∑
τ∈F× ψ(τx)Wπ(τy), where the Whittaker functionWπ : A× → C

is given by Wπ(y) :=WS(yS)
∏

p/∈SW
0
πp
(yp) (see §4.2.1, §4.2.2).

Lemma. One has ∥Φπ∥2 = c1L
(S)(adπ, 1), where

c1 :=
2

ζ
(S)
F (2)

∏
p/∈S

∆
−1/2
ψp

∫
y∈F×S

|WS |2(y)
dy

|y|
. (5.10)

If π, π′ ∈ AS0 are distinct, then ⟨Φπ,Φπ′⟩ = 0.

Proof. The conclusion in the case π ̸= π′ is the multiplicity one theorem for PB×

combined with the injectivity of π 7→ πJL. The formula (5.10) is a consequence of
the lemma of §4.2.2 and the corresponding local calculation (§3.3). □

5.4.5. The normalizing scalar. Recall from (5.10), (5.9) and (5.3) the scalars
c1, c2, c3. By the local volume formulas of §3.1.3,

c−11 c2 = c3. (5.11)
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5.4.6. Application of the pretrace formula. Recall the theta functions Θ(ϕ,Ψ) at-
tached in §4.6 to each ϕ ∈ Ω,Ψ ∈ A0. Let f ∈ C∞c (PB×S ), Ψ ∈ AS

0 .

Lemma 1.
∑
π∈AS

0
|ωπ(f,Ψ)|∥Φπ∥Lp([PGL2]) <∞ for p = 2,∞.

Proof. By (4.7) and (4.8), it suffices to show that ∥Φπ∥Lp([PGL2]) ≪ C(π)O(1). The
case p = 2 follows from the lemma of §5.4.4 and (4.10). The case p = ∞ reduces
to the case p = 2 by axioms (S2a) and (S3b) of [25, §2.4], wherein the quantities
Sd(Φπ) may be estimated using [25, §3.2.5]. A direct proof of this convergence also
follows by a rearrangement of the arguments given below. □

Lemma 2. Θ(♡f,Ψ) =
∑
π∈AS

0
ωπ(f,Ψ)Φπ.

Proof. Set Φ1 := Θ(♡f,Ψ) and Φ2 :=
∑
π∈AS

0
ωπ(f,Ψ)Φπ; we must show that

Φ1 = Φ2. Since Φ1,Φ2 are cuspidal, it will suffice to demonstrate the equality of
their Whittaker functions W1,W2 : A× → C as defined in §4.2.1. By the lemma of
§4.6.3 and (5.7), we have

W1(y) =
∑

γ∈PB×

∫
g∈[PB×]

Ψ(g)WS(yS)f(g
−1
S γgS)

∏
p/∈S

Typ(g
−1
p γgp) dg.

The definition of Φπ implies (using Lemma 1 to justify the interchange of summation
with the Fourier integral over the compact group A/F ) that

W2(y) =
∑
π∈AS

0

ωπ(f,Ψ)WS(yS)
∏
p/∈S

W 0
πp
(yp).

Since Ψ ∈ AS
0 , we have ωπ(f,Ψ) = 0 for all π ∈ AS with π /∈ AS0 , so it suffices to

establish for all y ∈ A×, g ∈ PB×A the pointwise identity∑
γ∈PB×

f(g−1S γgS)
∏
p/∈S

Typ(g
−1
p γgp) =

∑
π∈AS

∑
φ∈B(π∩AS)

φ(g)π(f)φ(g)
∏
p/∈S

W 0
πp
(yp),

which follows from the pretrace formula (§4.3.2) and the identity W 0
πp
(yp) =

λπp
(Typ) (see (3.13)). □

Remark. Lemma 2 and its proof are in the spirit of arguments of Shimizu [40, §4],
but we were unable to relate them precisely (e.g., by deducing one from the other).

5.4.7. Some sesquilinear forms. Define V,M, E : Ω⊗Ω⊗A0⊗A0 → C by requiring
that for ϕ1, ϕ2 ∈ Ω satisfying ϕi[y] = ϕ′i[y] ⊗ ϕ′′i [y] with ϕ

′
i[y] ∈ S(A) and ϕ′′i [y] ∈

S(B0
A) for all y ∈ A×, one has with the abbreviations θi := θψτi (ϕ′i[τiy]) and

hi := θψτi (ϕ′′i [τiy],Ψi) that

V(ϕ1, ϕ2,Ψ1,Ψ2) := c−11

∫
y∈A×/F×A×2

|y|2 1

22

∑
τ1,τ2∈F×/F×2

⟨θ1h1, θ2h2⟩ d×2 y,

M(ϕ1, ϕ2,Ψ1,Ψ2) := c−11

∫
y∈A×/F×A×2

|y|2 1

22

∑
τ1,τ2∈F×/F×2

⟨θ1, θ2⟩⟨h1, h2⟩ d×2 y

and E := V −M, or equivalently,

E(ϕ1, ϕ2, ·, ·) := c−11

∫
y∈A×/F×A×2

|y|2 1

22

∑
τ1,τ2∈F×/F×2

Eτ1,τ2(ϕ1[τ1y], ϕ2[τ2y], ·, ·) d×2 y,

(5.12)
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where Eτ1,τ2 : S(BA)⊗S(BA)⊗A0 ⊗A0 → C is as in §4.5.6. The definitions makes
sense for the same reasons as in §4.7.3. The identity

V(ϕ1, ϕ2,Ψ1,Ψ2) = c−11 ⟨Θ(ϕ1,Ψ1),Θ(ϕ2,Ψ2)⟩. (5.13)

follows from §4.6.5 when ϕ is a pure tensor, hence in general by linearity.

5.4.8. The main identities.

Proposition 2. Let f ∈ C∞c (PB×S ) and Ψ1,Ψ2 ∈ AS
0 . Then

V(♡f,♡f,Ψ1,Ψ2) = Vf (Ψ1,Ψ2), (5.14)

M(♡f,♡f,Ψ1,Ψ2) = Mf (Ψ1,Ψ2), (5.15)

Vf (Ψ1,Ψ2) = Mf (Ψ1,Ψ2) + E(♡f,♡f,Ψ1,Ψ2). (5.16)

Proof. (5.14): By (5.13), Lemma 2 of §5.4.6, and the lemma of §5.4.4,

V(♡f,♡f,Ψ1,Ψ2) = c−11 ⟨Θ(♡f,Ψ1),Θ(♡f,Ψ2)⟩

= c−11

∑
π1,π2∈AS

0

⟨ωπ1(f,Ψ1), ωπ2(f,Ψ2)⟩

=
∑
π∈AS

0

L(S)(adπ, 1)ωπ(f,Ψ1), ωπ(f,Ψ2)

= Vf (Ψ1,Ψ2).

(5.15): by the lemma of §5.4.3 and (5.11).
(5.16): by (5.14), (5.15) and the definition of E . □

5.4.9. Completion of the proof. We now apply Proposition 1 (see §4.5.6) and
Proposition 2 to prove Theorem 4. The purpose of this final, purely technical
part of the argument is to recast the content of those propositions in terms of
S(BS) rather than the less “user-friendly” space Ω.

By weak approximation, we may choose a compact fundamental domain Y ⊂
A×/A×2 for A×/F×A×2 with the property that yp = 1 for all y ∈ Y and p ∈ S.
Choose a finite set X ⊆ F× of representatives for the finite set

{τ ∈ F×/F×2 : there exists y ∈ Y so that ypτ ∈ F×2p O×p for all p /∈ S}. (5.17)

For y ∈ Y, τ ∈ X, let ♢τy : S(BS) ↪→ S(BA) denote the map ♢yτΦ := Φ ⊗
(⊗p/∈Sϕ

0
p[τyp]), where ϕ0p ∈ Ωp denotes as usual the distinguished element. For

f ∈ C∞c (PB×S ), one then has ♢τy♡τf = ♡f [τy]. Observe that for p /∈ S and

t ∈ F×p , one has ϕ0p[t] = 0 unless t ∈ F×2p O×p . It follows that for τ ∈ F× and y ∈ Y ,
one has ♡f [τy] = 0 unless τ belongs to the set (5.17), hence that

E(♡f,♡f, ·, ·) = c−11

22

∫
y∈Y

|y|2
∑

τ1,τ2∈X
Eτ1,τ2(♢τ1y♡τ1f,♢τ2y♡τ2f, ·, ·) d×2 y. (5.18)

Define ετ1,τ2 : S(BS)⊗ S(BS)⊗AS
0 ⊗AS

0 → C by

ετ1,τ2(Φ1,Φ2,Ψ1,Ψ2) :=
c−11

22

∫
y∈Y

|y|2Eτ1,τ2(♢τ1yΦ1,♢τ2yΦ2,Ψ1,Ψ2) d
×
2 y. (5.19)

We verify the assertions made in Theorem 4:

(1) The “relevance” follows from (5.18), (5.19) and Proposition 2.
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(2) Since Sϕ0p = ϕ0p, one has S♢τiy = ♢τiyS. For g ∈ PB×S and s ∈ Mp2(FS),
one has Ad(g)♢τiy = ♢τiy Ad(g) and ρτi(s)♢τiy = ♢τiyρτi(s). Thus the
“O1(F )-invariance,” “SO(B0

S)-invariance” and “metaplectic invariance” fol-
low from §4.5.7.

(3) The “main estimate” is the content of Proposition 1.

5.5. Classicalization. We now specialize to the setting of Theorem 1 and record
how Theorem 4 specializes to Theorem 3.

5.5.1. Specialization to a single place. We specialize the definitions of §5.2 to the
case that ramification is concentrated at a single place q of F , finite or infinite.
This is the case required for the proof of Theorem 1 as well as its non-archimedean
analogue pursued in [29].

Assume that S is the set of places p for which either

• p is infinite,
• p is a finite place at which B ramifies, or
• p = q.

Assume that for each p ∈ S − {q}, the completion Bp is non-split, or equivalently,

that PB×p is compact. There are the following possibilities:

(1) q is real, in which case F is totally real and B ramifies at every infinite
place other than q.

(2) q is complex, in which case F is real and B ramifies at every infinite place
other than q.

(3) q is finite, in which case F is totally real and B is totally definite.

For each place p, define the compact open subgroup Jp ⩽ PB×p as in §3.4 by

taking for Jp the image of R×p if p is finite and taking Jp := PB×p if p is infinite. Set
J :=

∏
p̸=q Jp. In addition to the notation of §5.1, we now introduce a superscripted

J , as in AJ ,AJ
0 , π

J to denote the J-fixed subspace. We denote by AJ
+ ⊆ AJ ,

AJ
0+ ⊆ AJ

0 the “even” subspaces consisting of φ that are PB×p -invariant for all

p ∈ S − {q}. Thus, for instance, AJ
0+ ⊆ AJ

0 ⊆ AS
0 ⊆ A0 ⊆ A. We denote by

A0, A
J , AJ0 , A

J
+, A

J
0+ the set of all π ∈ A having nonzero intersection with the space

having the corresponding scripted notation.
Set G := PB×q , and let f ∈ C∞c (G). For p ∈ S − {q}, set eJp := vol(Jp)

−11Jp ∈
C∞c (PB×p ). Define f̃ ∈ C∞c (PB×S ) by the formula

f̃(g) := f(gq)
∏

p∈S−{q}

eJp(gp).

For π ∈ AJ0 and Ψ ∈ AJ
0 , set ωπ(f,Ψ) :=

∑
φ∈B(π∩AJ )⟨φ,Ψ · π(f)φ⟩. Then

ωπ(f̃ ,Ψ) = ωπ(f,Ψ) (see §5.2.1 for the definition of the left hand side). Since
dim(πp) = 1 for all p ∈ S − {q}, one has for Ψ ∈ π′ ∈ AJ

0 that ωπ(f,Ψ) = 0 unless
π′ ∈ AJ

0+.

Let Vf ,Mf : AJ
0+⊗AJ

0+ → C denote the sesquilinear forms obtained by restrict-

ing the forms Vf̃ ,Mf̃ : AS
0 ⊗AS

0 → C. Then

Vf (Ψ1,Ψ2) =
∑
π∈AJ

0

L(S)(adπ, 1)ωπ(f,Ψ1)ωπ(f,Ψ2). (5.20)
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By the observation that SeJp = eJp for p ∈ S − {q} and the local calculations

(3.15) and (3.16), we see that for Ψ1 ∈ π1 ∈ AJ0+ and Ψ2 ∈ π2 ∈ AJ0+, we have
Mf (Ψ1,Ψ2) = 0 unless π1 = π2 =: π, in which case

Mf (Ψ1,Ψ2) = c4L
(S)(π, 12 )

∫
g∈G

⟨Ad(g)Sf,Sf⟩L2(G)⟨π(g)Ψ1,Ψ2⟩PB× dg (5.21)

where

c4 := 2tζ
(S)
F (2) vol([PB×])−1. (5.22)

with t the number of finite primes p ∈ S − {q}.

5.5.2. Strong approximation. Retaining the notation of §5.5.1, we record here how
the quotient [PB×]/J unadelizes under some assumptions. Recall that G := PB×q .

Let Γ ⩽ G denote the image of PB× ∩J under the inclusion PB× ↪→ G. Then Γ is
a discrete cocompact subgroup of G, and the natural map ι : Γ\G → [PB×]/J is
injective. We record a standard consequence of strong approximation.

Lemma. Suppose that F has odd narrow class number and either that

(1) Bq is split, or that
(2) q is infinite and B has class number one.

Then ι is bijective.

5.5.3. Proof of Theorem 3. We assume now that q is archimedean, so that the
above setting recovers that of §1.5. We deduce Theorem 3 by specializing (parts
of) Theorem 4, following the unadelization procedure discussed above. For f ∈
C∞c (PB×q ), we have

V(f) = Vf (Ψ1,Ψ2) = Vf̃ (Ψ1,Ψ2),

and similarly for M(f). Here V(f) is as defined in §1.8, while Vf and Vf̃ are as in

§5.5.1. We identify τ ∈ F× with its image in R× via the given archimedean place
q. Inspecting the definitions, we have ♡τ f̃ = (♡τf) ⊗ Φτ , where ♡τf ∈ S(Bq) is
defined by ♡τf(g) :=W (τ nr(g))f(g) and Φτ = ⊗p∈S−{q}Φ

τ
p for some Φτp ∈ S(Bp)

not depending upon f . The required identity (1.13) then holds with Eτ1,τ2(ϕ) :=
ετ1,τ2(ϕ⊗ Φτ1 , ϕ⊗ Φτ2 ,Ψ1,Ψ2).

To deduce the claimed error estimate (1.14), we specialize the main estimate
(1.14) of Theorem 4 to the case that s ∈ Mp2(FS) lifts the diagonal element
diag(y, y−1) of SL2(Fq). Then ρτ0(s) (§3.2.3) acts on S(BS) via the factor S(Bq),
where it acts by a constant multiple of the dilation operator Dy defined in §1.8.
The relevant estimates for Ξ(s) were recorded in §3.1.5.

Part 2. Application to microlocal lifts

Our aim is now to prove Theorem 1 by application of Theorem 3. We retain
the general notation of §1.5 (in particular, G = PGL2(R), Γ < G is an arithmetic
subgroup, and A0 is the set of nontrivial irreducible representations π ⊆ L2(Γ\G)
of both the group G and the Hecke operators Tp) and the asymptotic notation
and conventions of §1.10 (in particular, the conventions concerning “h-dependent
elements” and “fixed”).

The microlocal lift measures µπ are defined (§6.5) using differential operators
(namely, raising and lowering operators), but our methods apply most naturally to
the distributions µ(π(f), ·) attached in §1.8 to integral operators π(f), f ∈ C∞c (G).
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Our first main task is thus to give an alternative construction of the microlocal lift
measures using integral operators. One input here is the microlocal calculus for
Lie group representations developed in [35], whose specialization to PGL2(R) we
recall in §6.7. Having constructed microlocal lift measures in this way, we are in
good position to apply Theorem 3, and must then estimate the “main” and “error”
terms that arise. We refer back to §1.10 for a more detailed survey of Part 2.

6. Archimedean preliminaries

6.1. Lie algebra. Let g denote the Lie algebra of G. We denote by gC ∼= sl2(C)
its complexification and by g∗C the complex dual. We will often identity gC with
the space of linear functions on g∗C. We work with the following basis elements for
gC:

X :=
1

2i

(
1 i
i −1

)
, Y :=

1

2i

(
1 −i
−i −1

)
, W :=

1

2i

(
0 1
−1 0

)
.

These satisfy [X,Y ] = −2W , [W,X] = X and [W,Y ] = −Y . The map θ 7→ eiθW

defines an isomorphism from R/2πZ to K1. The complex conjugation on gC is
given by −X = Y and −W =W .

The center of the universal enveloping algebra of gC is the one variable polynomial
ring C[Ω], where

Ω :=W 2 − XY + Y X

2
=W (W − 1)−XY =W (W + 1)− Y X.

The ring Sym(gC)
G ofG-invariant polynomials on g∗C is generated by the polynomial

Λ := W 2 −XY . The Harish–Chandra isomorphism C[Ω]
∼=−→ C[Λ] is given in this

case by Ω 7→ Λ− 1/4.
We identify g∗C with gC via the trace pairing (x, ξ) 7→ ⟨x, ξ⟩ := trace(xξ). We

identify the real and imaginary duals g∗ and ig∗ of g with the subspaces of g∗C taking
real and imaginary values on g, respectively. We abbreviate g∧ := ig∗; it identifies
with the Pontryagin dual of g via the natural pairing g×g∧ ∋ (x, ξ) 7→ e⟨x,ξ⟩ ∈ C(1).
We occasionally work with the coordinates and basis elements

g ∋ x =

(
x1/2 x2
x3 −x1/2

)
=

∑
j=1,2,3

xjej ,

g∧ ∋ ξ = i

(
ξ1 ξ3
ξ2 −ξ1

)
=

∑
j=1,2,3

ξje
∗
j ,

so that the natural pairing is given by (x, ξ) 7→ ei
∑
xjξj . We note that the invariant

polynomial Λ is given in this optic by Λ(ξ) = det(ξ/i) = −ξ21 − ξ2ξ3.
The following elements, defined for t ∈ R ̸=0, will occur frequently in our analysis:

ξ(t) := i

(
t

−t

)
∈ g∧. (6.1)

We note that X(ξ(t)) = Y (ξ(t)) = t, W (ξ(t)) = 0 and Λ(ξ(t)) = −t2. We note also
that the G-stabilizer of ξ(t) is the diagonal subgroup H.

We fix norms |.| on all of the above spaces.
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6.2. Coadjoint orbits. A coadjoint orbit O is a G-orbit on g∧; in particular, it
is a smooth manifold. The origin {0} is a zero-dimensional coadjoint orbit. The
other coadjoint orbits are two-dimensional and of the form

O(λ) := {ξ ∈ g∧ − {0} with Λ(ξ) = λ}

for some λ ∈ R. If λ = 0, then O(λ) is the regular subset of the nilcone; if λ > 0, it
is a two-sheeted hyperboloid; if λ < 0, it is a one-sheeted hyperboloid. For t ̸= 0,
the orbit of ξ(t) is O(−t2).

We equip any two-dimensional coadjoint orbit O with its normalized symplectic
measure

Cc(g
∧) ∋ a 7→

∫
O
a :=

∫
ξ∈O

a(ξ) dω(ξ),

defined by the 2-form ω on O described as follows (see, e.g., [35, §6] or [18] for
further details, and the calculations of §8.2 for some explicit formulas). For each
ξ ∈ O, the tangent space TξO identifies with the space of vectors {x · ξ : x ∈ g},
where x · ξ ∈ g∧ is defined by differentiating the action of G on g∧. The component
ωξ of ω at ξ is then given by ωξ(x · ξ, y · ξ) := ⟨ξ, [x, y]⟩/2πi. For each a ∈ Cc(g

∧),
the function R ∋ λ 7→

∫
O(λ)

a is continuous and compactly-supported (see, e.g., [35,

§11.2]). The rescaling hO is also a coadjoint orbit, and we have
∫
ξ∈hO a(ξ) dω(ξ) =

h
∫
ξ∈O a(h ξ) dω(ξ). We record a simple estimate:

Lemma. Let τ ∈ g∧ with |τ | ≍ 1, and let 0 < r ⩽ 1. For any two-dimensional
coadjoint orbit O, the symplectic volume of the subset {ξ ∈ O : |ξ − τ | < r} of O is
O(r2).

Proof. Each τ ∈ g∧−{0} is regular, i.e., the differential of the invariant polynomial
Λ is nonzero at τ . On a small neighborhood of each such τ , we may thus find local
coordinates (τ1, τ2,Λ) with respect to which the coadjoint orbits are the fibers of the
projection onto the third coordinate, with the symplectic measures given by smooth
multiples of Lebesgue measure in the first two coordinates. The required estimate
follows for τ in a small fixed neighborhood of each fixed element of g∧ − {0}, then
in general by continuity and compactness. □

6.3. Representations. Let π be an irreducible unitary representation of G. Then
Ω acts on the smooth subspace of π by some real scalar Ωπ. We set λπ := 1/4+Ωπ,
and refer to it as the infinitesimal character of π. Up to isomorphism, we may
classify π as follows:

• The one-dimensional representations (the trivial representation C and the
sign representation C(sgn ◦ det)), for which Ωπ = 0 and λπ = 1/4.

• The discrete series representations π(k) (k ∈ Z⩾1), for which Ωπ = k(k−1)
and λπ = (k − 1/2)2. (We note that π(k) is often denoted D2k.)

• The unitary principal series representations π(t, ε), with
(i) t ∈ R and ε ∈ {±1} or
(ii) t ∈ i(−1/2, 1/2)− {0} and ε = 1 (the “complementary series”),
obtained by normalized parabolic induction of the character diag(y, 1) 7→
sgn(y)ε|y|it, for which Ωπ = −1/4− t2 and λπ = −t2.

The only equivalences are that π(t, ε) ∼= π(−t, ε). The tempered irreducibles are
the π(k) and π(t, ε) with t ∈ R.
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Suppose that π is not one-dimensional. We may then realize it as follows. If
π = π(t, ε), set Q := Z; if π = π(k), set Q := {q ∈ Z : |q| ⩾ k} and ε := 1.
We regard L2(Q) as a Hilbert space with respect to the counting measure, with
basis elements given by the δ-masses eq at each q ∈ Q. It contains the dense
subspace Cc(Q) consisting of the finitely-supported elements. We verify readily that
the following formulas define an infinitesimally unitary (g,K)-module structure on
Cc(Q), corresponding to a representative for the isomorphism class of π:

Xeq = (q(q + 1)− Ωπ)
1/2eq+1,

Y eq+1 = (q(q + 1)− Ωπ)
1/2eq,

Weq = qeq, eiθW eq = eiθqeq, diag(−1, 1)eq = (−1)εe−q.

6.4. Kirillov formula. The character of an irreducible representation π of G is a
generalized function χπ : G → C (see, e.g., [19, §X]). Fix a sufficiently small open
neighborhood G of the origin in g. The normalized Jacobian of the exponential map
is the function jac : G → R>0 for which

• jac(0) = 1, and
• if dg is any Haar measure on G, then there is a unique Haar measure dx
on g so that for g = exp(x) with x ∈ G, we have dg = jac(x)dx. We say in
this case that dg and dx are compatibly normalized.

Lemma. Let π be a tempered irreducible unitary representation of G. Set Oπ :=
O(λπ). For x ∈ G, we have the identity of generalized functions

χπ(exp(x)) = jac(x)−1/2
∫
ξ∈Oπ

e⟨x,ξ⟩ dω(ξ).

See, e.g., [35, §6] and references. This says concretely that for each ϕ ∈ C∞c (G)
and Haar measure dx on g, the operator

∫
x∈g ϕ(x)π(exp(x)) dx on π belongs to the

trace class and has trace
∫
ξ∈Oπ

(
∫
x∈g ϕ(x) jac(x)

−1/2e⟨x,ξ⟩ dx) dω(ξ).

6.5. Construction of µπ. Let π ∈ A0 with λπ < 0. Then π ∼= π(t, ε) with
t =

√
−λπ > 0. Recall that we have chosen a unit vector φπ ∈ π invariant by K1.

The microlocal lift µπ of π is defined on K-finite smooth functions Ψ : Γ\G → C
as follows. Set φ0 := φπ and s := 1/2 + it. Define φq for q ∈ Z recursively by the
formulas iXφq = (s+ q)φq+1 and iY φq = (s− q)φq−1. Then

µπ(Ψ) :=
∑
q∈Z

⟨φ0Ψ, φq⟩.

6.6. Branching coefficients. Let π, σ ∈ A0.

Lemma 1. If σ is not even, then ⟨φ1Ψ, φ2⟩ = 0 for all φ1, φ2 ∈ π and Ψ ∈ σ. In
particular, µπ(Ψ) = 0.

We give the proof below after some otherwise relevant preliminaries.
Assume temporarily that for each p ∈ S, the involutory Hecke operator Tp acts

trivially (i.e., with eigenvalue +1 rather than −1) on σ. The triple product formula
[13] then implies that for eigenfunctions φ1, φ2 ∈ π and Ψ ∈ σ,

|⟨φ1Ψ, φ2⟩|2 = L(π, σ)
∫
g∈G

⟨gφ1, φ1⟩⟨gφ2, φ2⟩⟨gΨ,Ψ⟩ dg, (6.2)
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where L(π, σ) is nonnegative real given explicitly in terms of special values of L-
functions; in particular,

L(π, σ) ≍
L(π ⊗ π ⊗ σ, 12 )

L(adπ, 1)2L(adσ, 1)
, (6.3)

where L(· · · ) denotes the finite part of an L-function.

Proof of Lemma 1. Since the distributions µπ are invariant by the involutory Hecke
operators Tp (p ∈ S), the conclusion is clear if some such operator acts nontrivially
on σ, so suppose otherwise that each such operator acts trivially. The global root
number of σ is then the same as the local root number at the distinguished real
place q, which, by hypothesis, is −1. Therefore L(σ, 12 ) = 0. Since L(π⊗π⊗σ, 12 ) =
L(adπ ⊗ σ, 12 )L(σ,

1
2 ), we have also L(π, σ) = 0. The conclusion follows now from

(6.2). □

Lemma 2. Let σ ∈ A0 be fixed and even. Let π be an h-dependent element of A0

with λπ < 0 and |h2 λπ| ≍ 1.

(i) Let Ψ ∈ σ be a fixed eigenfunction. Then

|µπ(Ψ)|2 ≪ hL(π, σ). (6.4)

(ii) There is a fixed eigenfunction Ψ ∈ σ so that

|µπ(Ψ)|2 ≫ hL(π, σ). (6.5)

(iii) We have
hL(π, σ) ≪ 1. (6.6)

Proof. We may assume that Ψ is a K1-eigenvector. There are two cases:

• σ is a principal series representation π(t, ε). Our assumption that σ is even
then implies that ε = 1.

• σ is a discrete series representation π(k).

Explicit formulas for the matrix coefficient integral of (6.2) in terms of Γ-factors
follow from work of Watson [47] and Ichino [13] in the first case and from work of
Woodbury [39, Appendix] in the second case. Applying Stirling’s asymptotics to
these formulas gives the upper bound (6.4). For the lower bound (6.5), we choose
Ψ to be a K1-eigenvector of smallest nonnegative weight and appeal again to the
explicit formulas. The final estimate (6.6) follows from (6.5) and the trivial bound
µπ(Ψ) ≪ 1. □

Remark. Since we require here estimates rather than explicit formulas, we sketch
an alternative proof of Lemma 2. Using (6.2), we may write |µπ(Ψ)|2 =
L(π, σ)|µloc

π (Ψ)|2, say. One can show by arguments as in §8.2 and [30, §6.3] that the
leading order asymptotics as h → 0 of |µloc

π (Ψ)|2 are given by a constant multiple
of h

∫
s∈H⟨sΨ,Ψ⟩ ds. As in [25, §3.3.1], we may write

∫
s∈H⟨sΨ,Ψ⟩ ds ≍ |ℓ(Ψ)|2,

where ℓ is described in the Kirillov model Ψ 7→WΨ of σ (with respect to some fixed

nontrivial character) by the absolutely convergent integral ℓ(Ψ) =
∫
y∈R×WΨ(y)

dy
|y| .

Thus |µloc
π (Ψ)|2 ≪ h; moreover, if ℓ(Ψ) ̸= 0, then we can replace “≪” with “≍”.

6.7. Operator calculus. In this subsection, we recall some properties of the op-
erator calculus developed in [35] (and refined in [34, 32], but we do not require the
refinements). We denote by π an h-dependent unitary representation of G and by
π∞ its subspace of smooth vectors.
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6.7.1. The basic operator assignment. We fix once and for all a cutoff χ ∈ C∞c (g)
with the following properties:

• The support of χ is sufficiently small.
• χ is [0, 1]-valued, χ(−x) = χ(x), and χ = 1 in a neighborhood of the origin.

For any h-dependent Schwartz function a ∈ S(g∧), we may define the following
objects (see [35, §2] for details):

• a∨ : g → C, the inverse Fourier transform of a.
• ah : g∧ → C the h-dependent function given by rescaling: ah(ξ) := a(h ξ).
• a∨h : g → C, the inverse Fourier transform of the rescaling, thus a∨h (x) =

h−3 a∨(x/ h).
• χa∨h ∈ C∞c (g), the cutoff of a∨h .
• The compactly-supported smooth distribution χ(x)a∨h (x) dx on g, which is
supported near the origin.

• The pushforward under the exponential map x 7→ g = exp(x) of this distri-

bution, which may be written Õph(a)(g) dg for some Õph(a) ∈ C∞c (G) sup-

ported near the identity; explicitly, Õph(a)(exp(x)) = jac−1(x)χ(x)a∨h (x).
• An h-dependent integral operator Oph(a : π) on π∞, abbreviated Oph(a)
when π is clear by context, given by

Oph(a : π) := π(Õph(a)) =

∫
x∈g

χ(x)a∨h (x)π(exp(x)) dx.

6.7.2. Adjoints. The operator Oph(a) extends to a bounded operator on π with
adjoint Oph(a). In particular, if a is real-valued, then Oph(a) is self-adjoint and
Oph(a)

2 is positive-definite.

6.7.3. Symbol classes. For ξ belonging to any normed space (e.g., g∧), we set
⟨ξ⟩ := (1 + |ξ|2)1/2.

For fixed 0 ⩽ δ < 1/2 and m ∈ Z, we write Smδ (denoted “Sm[hδ]” in [35, §4]) for
the space of h-dependent functions a : g∧ → C such that for each fixed multi-index

α ∈ Zdim(g)
⩾0 , the corresponding partial derivative ∂αa enjoys for each ξ ∈ g∧ the

upper bound

∂αa(ξ) ≪ h−δ|α|⟨ξ⟩m−|α|.
(The implied constant is thus allowed to depend upon α, but not upon h or ξ.) We
extend the definition to m = ∞ or m = −∞ by taking unions or intersections. For
instance, an h-independent Schwartz function defines an element of S−∞δ , while a
polynomial of fixed degree m ∈ Z⩾0 and coefficients O(1) defines an element of Smδ .
Elements of S−∞δ are in particular h-dependent Schwartz functions on g∧, so the
operators Oph(a) := Oph(a : π) may be defined as above.

6.7.4. Smoothing operators. For Lie algebra elements x1, . . . , xm, we write x1 · · ·xm
for their product in the universal enveloping algebra and abbreviate π(x1 · · ·xm) :=
dπ(x1) · · · dπ(xm). We denote by Ψ−∞ := Ψ−∞(π) the space of h-dependent opera-
tors T on π∞ with the property that for any fixed collection x1, . . . , xm, y1, . . . , yn ∈
g, the operator norm of π(x1 · · ·xm)Tπ(y1 · · · yn) is O(1). This is easily seen to be
equivalent to the definition of [35, §3]. It is verified in [35, §12.3] (see part (iii) of
Theorem 9) that if π is irreducible, then

T ∈ Ψ−∞ =⇒ the trace norm of T is O(1). (6.7)
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Given an h-dependent scalar c and vector space V consisting of h-dependent
quantities, we denote by cV the vector space of h-dependent quantities of the form
cv, with v ∈ V . We write h∞ V for the intersection of hη V taken over all fixed
η ∈ R. In particular, we may define h∞Ψ−∞; we will regard it as the space of
“negligible” operators on π∞.

6.7.5. Composition. For ϕ1, ϕ2 ∈ C∞c (g) supported near the origin, let ϕ1 ⋆ ϕ2 ∈
C∞c (g) denote the function for which the distribution (ϕ1⋆ϕ2)(x) dx on g is the pull-
back of the convolution on G of the images under pushforward of the distributions
ϕ1(x) dx and ϕ2(x) dx on g. For a, b ∈ S−∞δ , it is verified in [35, §2.5, §4.6] that the
(rescaled) star product a⋆h b, characterized by the identity (a⋆h b)h = (χa∨h ⋆χb

∨
h )
∧,

defines an element of S−∞δ that enjoys the composition formula

Oph(a)Oph(b) ≡ Oph(a ⋆h b) (mod h∞Ψ−∞). (6.8)

The failure of (6.8) to be an equality is an artefact of the cutoff χ.

6.7.6. Equivariance. It follows from [35, §5.5] that for g ∈ G belonging to a fixed
compact subset,

Oph(g · a) ≡ π(g)Oph(a)π(g)
−1 (mod h∞Ψ−∞), (6.9)

where g · a(ξ) := a(g−1 · ξ). The error comes from the failure of the cutoff χ to be
exactly G-invariant. It will be convenient to assume that χ is exactly K-invariant
(by averaging a given cutoff, for instance). We then have

Oph(g · a) = π(g)Oph(a)π(g)
−1 for all g ∈ K. (6.10)

More precisely, Õph(g · a) is the conjugate by g of Õph(a).

6.7.7. Star product extension and asymptotics. It is shown in [35, §4.6] that the
star product extends to a compatible family of maps ⋆h : Smδ ×Snδ → Sm+n

δ enjoying
the asymptotic expansion: for fixed J ∈ Z⩾0,

a ⋆h b ≡
∑

0⩽j<J

hj a ⋆j b (mod h(1−2δ)J Sm+n−J
δ ), (6.11)

with ⋆j a fixed polynomial-coefficient differential operator, of order j in each vari-
able, homogeneous of degree j, satisfying the mapping property ⋆j : Smδ × Snδ →
h−2δj Sm+n−j

δ and given in the simplest case by a ⋆0 b = ab.

6.7.8. Extended operator assignment. It is shown in [35, §5.6] that Oph extends to
a compatible family of maps

Oph : Smδ → {h-dependent operators on π∞}

for which the composition and equivariance properties (6.8), (6.9) and thus (6.10)
remain valid.

6.7.9. Polynomial symbols. It is verified in [35, §5.2] that if p ∈ Smδ is an h-
dependent polynomial function (corresponding to some h-dependent element of
Sym(gC)), then

Oph(p) = π(sym(ph)), (6.12)

where sym denotes the symmetrization map from Sym(gC) to the the universal
enveloping algebra of gC and (as above) ph(ξ) = p(h ξ).
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6.7.10. Trace estimates. It is shown in [35, §12.3] that if π is irreducible and tem-
pered (so that the coadjoint orbit Oπ as well as its rescaling hOπ may be defined),
then for a ∈ S−2δ , the operator hOph(a) is trace-class, with trace asymptotics
described for each fixed J ∈ Z⩾0 by

trace(hOph(a)) =
∑

0⩽j<J

hj
∫
hOπ

Dja+O(h(1−δ)J), (6.13)

where Dj is a fixed constant coefficient differential operators of pure degree j, with
D0a = a. In particular,

trace(hOph(a)) ≪ 1. (6.14)

6.7.11. Clean-up. It follows from [35, §10.3] that if π is irreducible (so that its
infinitesimal character λπ ∈ R may be defined) and a ∈ S∞δ has the property that
the image under the invariant polynomial Λ : g∧ → R (see §6.1) of the support of

a is separated by at least h1/2−ε from h2 λπ for some fixed ε > 0, then

Oph(a) ∈ ⟨λπ⟩−∞ h∞Ψ−∞,

where as usual ⟨λπ⟩ := (1 + |λπ|2)1/2. In particular, the trace norm of Oph(a) is
O(⟨λπ⟩−∞ h∞).

(We note a potential point of notational confusion: the rescaled infinitesimal
character that we denote here by h2 λπ ∈ R is written “hλπ ∈ [g∧] ∼= R” in [35];
see [35, §9] for details.)

7. Microlocal lifts

7.1. Characterizing microlocal lifts via their symmetry. Theorem 3 applies
to the distributions Ψ 7→ µ(π(f),Ψ) attached to integral operators π(f) with f ∈
C∞c (G), but the construction of the microlocal lift µπ recorded in §6.5 is in terms
of differential operators. We thus encounter the problem of constructing µπ, or at
least some asymptotically equivalent distributions, using integral operators.

We begin with some motivational remarks. Recall the asymptotic notation and
terminology set in §1.8. Let π be an h-dependent element of A0 with λπ < 0 and
|h2 λπ| ≍ 1. Set v := c

∑
q∈Z:|q|⩽h−1/2 φq ∈ π, where c > 0 is chosen so that v is a

unit vector, and T := v ⊗ v ∈ π ⊗ π. It follows from calculations of Wolpert [50,
§5] (see [20, §3] for a concise account) that for fixed eigenfunctions Ψ,

µ(T,Ψ) = ⟨vΨ, v⟩ = µπ(Ψ) + O(h1/2). (7.1)

Set t :=
√
−h2 Ωπ =

√
−h2 λπ + O(h) ≍ 1. We verify readily that π(hX)v =

tv + O(h1/2), π(hY )v = tv + O(h1/2) and π(hW )v = O(h1/2); equivalently, for

fixed Z ∈ g, we have π(hZ)v = Z(ξ(t))v + O(h1/2), with ξ(t) ∈ g∧ as in (6.1);
in other words, v is an approximate eigenvector under the first-order differential
operators on π∞ defined by Lie algebra elements, with eigenvalue described by ξ(t).
We will verify below that some variants of these observations concerning v, phrased
in terms of T , give sufficient conditions for (more precise forms of) the estimate
(7.1) to hold. Turning to details:

Definition. Let π be an h-dependent irreducible unitary representation of G. Let T
be an h-dependent positive-definite trace class operator on π such that trace(T ) ≪
1. Let τ be an h-dependent element of g∧ with |h τ | ≪ 1. Let 0 < δ ⩽ 1/2 be fixed.
We say that T is δ-localized at τ if for each fixed n ∈ Z⩾0 and each h-dependent
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polynomial function p : g∗C → C of degree O(1) and coefficients O(1) that vanishes
to order at least n at h τ , we have

trace(Oph(p)T ) ≪ hnδ, (7.2)

where Oph(p) := Oph(p : π) is as given by (6.12).

One can verify that the T considered above is 1/2-localized at ξ(t); we will not
need this fact, so we omit the proof.

We may construct integral operators satisfying the above definition:

Lemma 1 (Integral operators attached to localized symbols are localized). Let 0 <

δ < 1/2 be fixed. Let τ ∈ g∧ with |h τ | ≍ 1. Let a ∈ h−δ S−∞δ be real-valued.
Let π be an h-dependent tempered irreducible unitary representation of G. Set
T := hOph(a : π)2.

Suppose that every element of supp(a) ∩ hOπ is of the form h τ +O(hδ). Then
T is δ-localized at τ , and

trace(T ) =

∫
hOπ

a2 +O(h1−δ) = O(1). (7.3)

Proof. We have a2(ξ) ≪ h−2δ. By the lemma of §6.2 and the hypotheses concerning

|h τ | and the support of a, the set hOπ ∩ supp(a) has symplectic volume O(h2δ).
The required trace estimate (7.3) thus follows from §6.7.10. In particular, the
operator T is positive-definite with trace(T ) ≪ 1.

To verify the localization property, fix n ∈ Z⩾0 and let p, as above, be an h-
dependent polynomial of degree O(1) and coefficients O(1) that vanishes to order

⩾ n at h τ . We must check then that trace(Oph(p)T ) ≪ hnδ.
We pause to observe that for each q ∈ S∞δ and each fixed J ∈ Z⩾0,

trace(Oph(q)T ) =
∑

0⩽j1,j2<J

hj1+j2
∫
hOπ

q ⋆j1 (a ⋆j2 a) + O(hJ
′
), (7.4)

where J ′ is fixed and J ′ → ∞ as J → ∞. This estimate follows from the com-
position formula (6.8), the star product asymptotics (6.11) and the trace estimate
(6.13), using (6.7) and (6.14) to clean up the remainders. Since hOπ ∩ supp(a) has

symplectic volume O(h2δ), we have also for fixed j1, j2 ⩾ 0 that∫
hOπ

q ⋆j1 (a ⋆j2 a) ≪ h2δ ∥q ⋆j1 (a ⋆j2 a)∥L∞(hOπ).

Returning to the proof of the lemma, choose a ball B1 with origin h τ and radius
≍ hδ so that supp(a) ∩ hOπ ⊆ B1. Let B2 denote the ball with the same origin as
B1 but twice the radius. Choose ϕ ∈ S−∞δ taking the value 1 on B1 and the value
0 on the complement of B2. We may then decompose p = ϕp+ (1−ϕ)p. We apply
the above estimates with q = ϕp and q = (1− ϕ)p:

• Our assumptions on p imply that ϕp ∈ hnδ S−∞δ . By (7.4) and the mapping

properties of ⋆j , the symbol hj1+j2 ϕp ⋆j1 (a ⋆j2 a) belongs to h−2δ+nδ S−∞δ
and thus has L∞-norm O(h−2δ+nδ). It follows that trace(Oph(ϕp)T ) =

O(hnδ +hJ
′
).

• By construction, hOπ ∩ supp(1− ϕ)∩ supp(a) = ∅, so (1− ϕ)p ⋆j1 (a ⋆j2 a)

vanishes identically on hOπ, and thus trace(Oph((1− ϕ)pT ) = O(hJ
′
).

We conclude by combining these estimates and taking J large enough. □
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We verify next the promised relationship between the above definition and µπ.

Lemma 2 (Some localized operators define microlocal lifts). Fix a mean-zero even
eigenfunction Ψ ∈ σ ∈ A0. Let π be an h-dependent element of A0 such that λπ < 0
and |h2 λπ| ≍ 1. Abbreviate L := L(π, σ). Let T be an h-dependent positive-definite
trace class operator on π with trace(T ) ≪ 1. Set τ := ξ(

√
−Ωπ) ∈ g∧, so that

|h τ | ≍ 1. Fix 0 < δ ⩽ 1/2.
Suppose that T is δ-localized at τ . Then

µ(T,Ψ) = trace(T )µπ(Ψ) + O(hδ
√
hL+ h∞). (7.5)

The proof is given in §7.2.

Remark 1. The estimate (7.5) implies in particular that µ(T,Ψ) = trace(T )µπ(Ψ)+

O(hδ), but this weaker estimate is inadequate for our applications, in which we
exploit crucially that L is “bounded on average” (see §8.1).

Remark 2. Although Lemma 2 is formulated in terms of L-values, it does not
fundamentally exploit the arithmeticity of Γ\G. What matters are the properties
of L enunciated in §6.6, which make sense for general finite volume quotients (see
[35, §1.4], [2]).

Remark 3. Lemma 2 may be used to give a proof of the asymptotic H-invariance
of the measures µπ, roughly in the spirit of [35, §26.5]; the relevant observations
are that

• if T is δ-localized at τ and g ∈ G is fixed, then π(g)Tπ(g)−1 is δ-localized
at g · τ , and

• H centralizes the elements ξ(t).

7.2. Calculations with raising and lowering operators. Here we record the
proof of Lemma 2 of §7.1. The proof is a bit tedious, but not difficult, and unrelated
to the main novelties of this work. It is basically a quantification of the arguments
used to prove (7.1). (Indeed, it is instructive to note that (7.5) recovers (7.1).) For
these reasons, the reader might wish to skim or skip this section on a first reading.

We recall that our task is to verify, under certain assumptions, the estimate (7.5).
We have π ∼= π(t, ε) with t > 0. We realize π(t, ε) as L2(Z) as in §6. There is then
a unique equivariant (isometric) isomorphism jπ : L2(Z) → π that maps the basis
element e0 to φπ. Thus φq, as in the construction of µπ, is equal to b(q)jπ(eq),
where b(q) is defined recursively by

b(q + 1) = b(q)
i

s+ q

√
q(q + 1)− Ωπ.

Since t ∈ R, we have |s+ q|2 = q(q+1)−Ωπ, and so |b(q)| = 1 for all q. Moreover,
since t > 0, we have for fixed q that b(q) = 1 + O(1/t). Thus the vectors φq are
asymptotically quite close to the jπ(eq).

By a limiting argument, it will suffice to consider the case that T is a finite
rank operator T =

∑
i jπ(vi) ⊗ jπ(vi) attached to some finite orthogonal subset

{vi} of L2(Z). For q, ξ ∈ Z, we set T (q, ξ) :=
∑
i vi(q)vi(q + ξ), so that T =∑

q,ξ T (q, ξ)jπ(eq)⊗ jπ(eq+ξ), and Ψ(q, ξ) := ⟨jπ(eq)Ψ, jπ(eq+ξ)⟩, so that

µπ(Ψ) =
∑
ξ

b(ξ)Ψ(0, ξ)
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and

µ(T,Ψ) =
∑
q,ξ

T (q, ξ)Ψ(q, ξ)

and

trace(T ) =
∑
i,q

|vi(q)|2 =
∑
q

T (q, 0).

By Cauchy–Schwarz and the assumed trace estimate for T ,∑
q

|T (q, ξ)| ⩽
∑
q

∑
i

|vi(q)vi(q + ξ)| ⩽
∑
q,i

|vi(q)|2 = trace(T ) ≪ 1.

Set r :=
√
−Ωπ, so that τ = ξ(r). We temporarily abbreviate X,Y,W :=

π(X), π(Y ), π(W ). We will use the following consequences of our assumption that
T is δ-localized at τ :

trace((hW )nT ) ≪ hnδ for each fixed n ∈ Z⩾0, (7.6)

trace((hX − h r)T ) ≪ hδ . (7.7)

Indeed, we have X(h τ) = Y (h τ) = h r and W (h τ) = 0, so the polynomial p =Wn

vanishes to order n at h τ and satisfies sym(ph) = (hW )n, while the polynomial
p = X − h r vanishes to order 1 at h τ and satisfies sym(ph) = hX − h r.

By (7.6) with n = 2, we have∑
i,q

|h q|2|vi(q)|2 = trace((hW )2T ) ≪ h2δ .

Using Cauchy–Schwarz as above, it follows that for fixed ξ,∑
q

|T (q, ξ)| · |hq| ≪ hδ . (7.8)

We now fix 0 < δ′ < δ, and argue using (7.6) for arbitrary fixed n that∑
q:| h q|⩾hδ′

|T (q, ξ)| ≪ h∞ . (7.9)

We now investigate the consequences of (7.7). We have

hXT =
∑
q,ξ

T (q, ξ) h
√
r2 + q(q + 1)eq+1 ⊗ eq+ξ,

thus

trace(hXT ) =
∑
q

h
√
r2 + q(q + 1)T (q, 1). (7.10)

Our assumptions on π imply that h r ≍ 1. We estimate the latter sum in the range

|h q| ⩾ hδ
′
using (7.9) and in the range |h q| < hδ

′
using the Taylor expansion

h
√
r2 + q(q + 1) = h r +O(|h q|).

The contribution to (7.10) of the remainder in this expansion is treated using (7.8).
We extend the sum to all q using (7.9) once again. We obtain in this way that

trace(hXT ) = h r
∑
q

T (q, 1) + O(hδ).
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Since T (q, 1) =
∑
i vi(q)vi(q + 1), the estimate (7.7) thus translates to∑

q,i

|vi(q)|2 =
∑
q,i

vi(q)vi(q + 1) + O(hδ). (7.11)

By iterating this estimate, one may deduce more generally that for each fixed ξ,∑
q,i

|vi(q)|2 =
∑
q,i

vi(q)vi(q + ξ) + O(hδ), (7.12)

which translates to ∑
q

T (q, ξ) = trace(T ) + O(hδ). (7.13)

We record details concerning this deduction at the end of §7.2.
Recall that Ψ(q, ξ) = 0 unless |ξ| ⩽ C for some fixed C. We have the trivial

bound
|Ψ(q, ξ)| ⩽ ∥Ψ∥L∞(Γ\G) ≪ 1 (7.14)

for all q, ξ. Suppose now that |h q| ⩽ hδ
′
. We claim then that

Ψ(q, ξ) ≪
√
hL+ h∞ (7.15)

and
Ψ(q, ξ) = Ψ(0, ξ) + O(|h q|

√
hL+ h∞). (7.16)

We will prove these when q ⩾ 0; an analogous argument applies to negative q.
For j ∈ Z⩾0 and q, ξ ∈ Z, let Ψj(q, ξ) be defined like Ψ(q, ξ), but with Ψ replaced

with XjΨ. We will work in what follows with fixed values of j, so that ∥XjΨ∥ ≪ 1.
By (6.6), we have

Ψj(0, ξ) ≪
√
hL. (7.17)

We also have the trivial bound

Ψj(q, ξ) ≪ 1, (7.18)

as in (7.14).
We now argue recursively using the following instance of “partial integration”:

the integral over Γ\G of X(jπ(eq)jπ(eq+ξ)X
jΨ) vanishes. Expanding this out, we

obtain with f(q) := h
√
r2 + q(q + 1) that

f(q + ξ)Ψj(q, ξ) = f(q)Ψj(q + 1, ξ) + hΨj+1(q, ξ + 1).

For q in the indicated range and ξ ≪ 1, we have f(q) ≍ 1 and f(q+ξ) = f(q)+O(h).
Hence for such q and ξ,

Ψj(q + 1, ξ)−Ψj(q, ξ) ≪ h(
∣∣Ψj(q, ξ)∣∣+ ∣∣Ψj(q + 1, ξ)

∣∣+ ∣∣Ψj+1(q, ξ + 1)
∣∣). (7.19)

Fix J ∈ Z⩾0 and then C ∈ R⩾1 sufficiently large, and set

βj(q) := C(1 + C h)−q sup
ξ

|Ψj(q, ξ)|.

We consider q ⩾ 0 with |h q| ⩽ hδ
′
. Having chosen C large enough, the estimate

(7.19) implies
βj(q + 1) ⩽ βj(q) + C hβj+1(q) (0 ⩽ j < J). (7.20)

Similarly, by (7.18),
βJ(q) ⩽ 1.

Thus the sequence of (J + 1)-dimensional row vectors

β(q) := (β0(q), β1(q), . . . , βJ−1(q), 1)



QUANTUM VARIANCE ON QUATERNION ALGEBRAS, III 51

satisfy

β(q) ⩽ β(0)Mq, M :=


1
C h 1

· · · · · ·
· · · 1

C h 1

 .

We also have, by (7.17) and the estimate (1+C h)q = 1+O(hδ
′
), the initial bound

βj(0) ≪
√
hL (0 ⩽ j < J).

These lead to

βj(q) ≪
√
hL+ h(J−j)δ . (7.21)

Taking j = 0 and recalling that J was arbitrary, we obtain (7.15), and also its
analogue for Ψ1; inserting the latter into the j = 0 case of (7.19) then gives (7.16).

We now combine the above estimates to conclude. Expanding the definitions,
we have

µ(T,Ψ) = trace(T )µπ(Ψ) + S1 + S2 + S3

where

S1 :=
∑
ξ

(∑
q

T (q, ξ)− trace(T )

)
Ψ(0, ξ), (7.22)

S2 :=
∑
q,ξ

T (q, ξ)(Ψ(q, ξ)−Ψ(0, ξ)), (7.23)

S3 := trace(T )
∑
ξ

(1− b(ξ))Ψ(0, ξ). (7.24)

Using (7.15) and (7.13), we see that S1 ≪ hδ
√
hL+h∞. To bound S2, we estimate

the contribution from |h q| ⩾ hδ
′
via (7.9) and (7.15). We then estimate the

remaining contribution via (7.16). We obtain

S2 ≪
√
hL

∑
ξ:|ξ|⩽C

∑
q

|T (q, ξ)| · | h q|+ h∞ ≪ hδ
√
hL+ h∞ . (7.25)

For S3, we use that Ψ(0, ξ) ≪
√
hL and that Ψ(0, ξ) ̸= 0 only if |ξ| = O(1), in

which case b(ξ) = 1 + O(h); thus S3 ≪ h
√
hL. This completes the proof of (7.5).

We finally record the promised details concerning the deduction of (7.12). Let
(V, ⟨, ⟩) be a complex inner product space, with unitary group U(V ).

Lemma. For a, b ∈ U(V ) and v ∈ V , we have

|⟨abv − v, v⟩|1/2 ⩽ |⟨av − v, v⟩|1/2 + |⟨bv − v, v⟩|1/2.

Proof. Introduce the abbreviations

εa := |⟨av − v, v⟩|1/2, εb := |⟨bv − v, v⟩|1/2.

We observe first, by expanding the square and invoking the assumed unitarity, that

∥av − v∥2 = 2Re⟨v − av, v⟩ ⩽ 2ε2a, (7.26)

and similarly for b. Consider now the inner product

I := ⟨a(bv − v), av − v⟩.
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On the one hand, by Cauchy–Schwarz and (7.26), we have |I| ⩽ 2εaεb. On the
other hand, by expanding out and invoking the unitarity of a and b, we see that

⟨abv − v, v⟩ = ⟨av − v, v⟩+ ⟨bv − v, v⟩ − I,

and thus

|⟨abv − v, v⟩| ⩽ ε2a + ε2b + 2εaεb = (εa + εb)
2.

The required inequality follows. □

Corollary. For a ∈ U(V ), v ∈ V and n ∈ Z, we have

|⟨anv − v, v⟩| ⩽ n2|⟨av − v, v⟩|. (7.27)

Proof. It suffices to consider the case n ⩾ 0; otherwise, replace (n, a) with (−n, a−1)
and use that

⟨av − v, v⟩ = ⟨a−1v − v, v⟩.
The required inequality is clear when n = 0, 1. For n ⩾ 2, we induct; the induction
step is given by the lemma with b := an−1. □

Remark. By taking V to be C2 with the standard inner product and a to be rotation
by some small angle, we may see that (7.27) is sharp, i.e., the factor n2 cannot be
replaced by anything smaller.

We now explain how the corollary implies (7.12). Let V be the inner product
space consisting of collections of complex numbers v = {vi(q)}i,q, where i ranges
over some index set I and q ranges over Z, with the inner product given by

⟨u, v⟩ =
∑
i,q

ui(q)vi(q).

Let a denote the unitary operator on V given by

(av)i(q) = vi(q + 1).

Our hypothesis (7.11) then reads ⟨v, v⟩ = ⟨v, av⟩+O(hδ), while the desired conclu-

sion (7.12) reads ⟨v, aξv⟩ = ⟨v, v⟩+O(hδ) for fixed ξ. Since ξ2 = O(1), the required
implication follows immediately from (7.27).

7.3. Constructing microlocal lifts via integral operators. Recall the coor-

dinates ξ = i

(
ξ1 ξ3
ξ2 −ξ1

)
on g∧. We henceforth fix some 0 < δ < 1/2. We denote

by K̃ the set of all real-valued a ∈ h−δ S−∞δ with the following properties:

• a(ξ) = 0 unless ξ1 > 0 and ξ1 ≍ 1 and ξ2, ξ3 ≪ hδ; equivalently, a is

supported in a O(hδ) neighborhood of some fixed compact subset of {ξ(t) :
t > 0}. In particular, a vanishes identically on O(λ) unless λ < 0 and
|λ| ≍ 1.

• We have

a(−(w · ξ)) = a(ξ) (7.28)

for all ξ ∈ g∧, where w =

(
0 1
−1 0

)
∈ G. Equivalently, a(ξ) is invariant

under swapping the coordinates ξ2 and ξ3.
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To each a ∈ K̃, we attach an h-dependent element k of C∞c (R<0) by the formula

k(λ) :=

∫
O(λ)

a2.

We note that the support condition for k follows from that for a. We denote by K
the set of h-dependent functions k arising in this way. We verify readily that K has
the “control” and “richness” properties enunciated in §1.8.

We henceforth work with one such k together with a corresponding symbol a ∈ K̃.
We fix C ⩾ 10 sufficiently large that a(ξ) = 0 unless 3/C < ξ1 < C/3. Then
k(λ) = 0 unless 2/C <

√
−λ < C/2.

We say that an h-dependent irreducible unitary representation π of G is good if

λπ < 0 and 1/C ⩽
√
−h2 λπ ⩽ C, and otherwise that π is bad. Informally, the bad

π are those whose rescaled infinitesimal characters are sufficiently separated from
the support of a that they play little role in our analysis.

Lemma. Let π be an h-dependent irreducible unitary representation of G. Set

T := hOph(a)
2,

where Oph(a) := Oph(a : π).

(i) T defines a positive-definite trace-class operator on π. If π is good, then

trace(T ) = k(h2 λπ) + O(h1−δ). (7.29)

If π is bad, then

trace(T ) = O(h∞⟨λπ⟩−∞). (7.30)

(ii) Fix a mean-zero even eigenfunction Ψ ∈ σ ∈ A0, and suppose that π ∈ A0. If
π is good, then

µ(T,Ψ) = k(h2 λπ)µπ(Ψ) + O(hδ
√
hL+ h∞), (7.31)

where L := L(π, σ). If π is bad, then

µ(T,Ψ) = O(h∞⟨λπ⟩−∞). (7.32)

Proof. If π is bad, then the estimate (7.30) follows from §6.7.11, while (7.32) follows
from (7.30) and the inequality |µ(T,Ψ)| ⩽ trace(T )∥Ψ∥L∞ . Suppose that π is
good. Then π is tempered, λπ < 0 and |h2 λπ| ≍ 1. Moreover, every element of

supp(a)∩hOπ is of the form h τ+O(hδ) with τ = ξ(t), t =
√
−Ωπ. The hypotheses

of (7.3) are thus satisfied, while the conclusion gives (7.30). To deduce (7.31), we
combine the lemmas of §7.1. □

8. Proofs of main results

Following the sketch of §1.10, we must establish the three key estimates (1.19),
(1.20) and (1.21). These are recalled and verified in the following subsections,
followed by the modifications needed for the holomorphic case.



54 PAUL D. NELSON

8.1. Quantum variance sums via integral operators. Recall from §7.3 that
we have chosen k ∈ K and a corresponding symbol a ∈ K̃. Then

f := h3/2 Õph(a) ∗ Õph(a)

(here ∗ denotes convolution in C∞c (G) with respect to our chosen Haar measure)
is an h-dependent positive-definite element of C∞c (G), supported in a fixed small
neighborhood of the identity element. For each unitary representation π of G, we

have π(f) = h1/2 Tπ with Tπ := hOph(a : π)2 as in the lemma of §7.3. Recall from
§1.8 that

V(f) =
∑
π∈A0

ιπµ(π(f),Ψ1)µ(π(f),Ψ2) = h
∑
π∈A0

ιπµ(Tπ,Ψ1)µ(Tπ,Ψ2). (8.1)

The purpose of this section is to verify the claimed estimate (1.19) relating V(f) to
the quantum variance of microlocal lifts, which we copy here for convenience:

V(f) = h
∑
π∈A0

ιπk(h
2 λπ)

2µπ(Ψ1)µπ(Ψ2) + O(hδ). (1.19)

We begin with an a priori bound:

Lemma. Fix C ⩾ 1, and fix an even σ ∈ A0. Then

h2
∑
π∈A0:

C−1⩽− h2 λπ⩽C

ιπL(π, σ) ≪ 1. (8.2)

Proof. This can be deduced using an approximate functional equation and the
Kuznetsov formula as in the work of Luo–Sarnak–Zhao (who in fact obtain and
require asymptotic formulas with strong error terms rather than merely upper
bounds (8.2) of the expected order of magnitude). For completeness, we record
a self-contained proof of (8.2). We assume k ∈ K chosen so that k(λ) ⩾ 1
whenever C−1 ⩽ −λ ⩽ C. Let π be as in (8.2), so that |k(h2 λπ)|2 ⩾ 1. Set
Tπ := hOph(a : π)2. Fix an eigenfunction Ψ ∈ σ for which (6.5) holds, so that
|k(h2 λπ)|2|µπ(Ψ)|2 ≫ hL(π, σ). It follows then by (7.31) that |µ(Tπ,Ψ)|2 ≫
hL(π, σ). Thus the left hand side of (8.2) is bounded by a fixed multiple of
h
∑
π∈A0

ιπ|µ(Tπ,Ψ)|2, which is just V(f) specialized to Ψ1 = Ψ2 = Ψ. The iden-

tity (1.13) and the estimates (1.20) and (1.21) give an asymptotic formula for V(f)
which implies in particular that V(f) ≪ 1. This completes the proof. (We note
that the proofs of the estimates (1.20) and (1.21), given below, do not depend upon
the lemma that we are proving, so our argument is non-circular.) □

We now verify (1.19). The contribution from bad π to (8.1) is adequately esti-
mated using (7.32) and the very weak Weyl law h100

∑
π∈A0

ιπ⟨λπ⟩−10 ≪ h10, say.

If π is good, then we see by (6.4) and (7.31) that

µ(Tπ,Ψ1)µ(Tπ,Ψ2) = k(h2 λπ)
2µπ(Ψ1)µπ(Ψ2)

+ O(h1+δ
√

L1L2 + h∞)
(8.3)

where Lj := L(π, σj). To discard the error, we apply Cauchy–Schwarz followed by
the above lemma, which gives for j = 1, 2 that

h
∑

good π∈A0

ιπ(h
1+δ Lj + h∞) ≪ hδ .
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The proof of (1.19) is now complete. In the following sections we will verify (1.20)
and (1.21), thereby completing the proof of Theorem 1.

We note for future reference that for x ∈ G (see §6.4),

f(exp(x)) = h3/2 jac−1/2(x)b∨h (x),

where b ∈ h−δ S−∞δ is characterized by the identity b∨h = jac−1/2(a ⋆h a)
∨
h . By

[35, §7.8], it admits an asymptotic expansion b ∼
∑
j⩾0 bj with b0 = a2 and bj ∈

h−2δ+(1−2δ)j S−∞δ ; by this we mean that b −
∑

0⩽j<J bj ∈ h−2δ+(1−2δ)J S−∞δ for
each fixed J ∈ Z⩾0.

8.2. Main term estimates. Before beginning the proof of (1.20), we estab-
lish a relevant integral formula. Recall that we have fixed a Haar measure dg
on G. Let dx denote the compatibly normalized Haar measure on g (§6.4), and
let dξ denote the corresponding dual measure on g∧, so that for instance ϕ(0) =∫
x∈g(

∫
ξ∈g∨ ϕ(ξ)e

⟨x,ξ⟩ dξ) dx for ϕ ∈ C∞c (g∧). Let Φ ∈ Cc(G) and ϕ1, ϕ2 ∈ Cc(g
∧).

The integral

I :=

∫
g∈G

Φ(g)

∫
ξ∈g∧

ϕ1(g · ξ)ϕ2(ξ) dξ dg

is then independent of these choices of measure. Our immediate aim is to express
I in terms of the normalized symplectic measures on coadjoint orbits. We do this
under the assumption that the ϕj are supported on the “negative cone” {ξ : Λ(ξ) <
0} = ∪t>0O(−t2), which is the case relevant for our applications.

To state our result requires some notation. Let t > 0. Recall that ξ(t) (see (6.1))
has G-orbit O(−t2) and stabilizer H (the diagonal subgroup). For ξ, η ∈ O(−t2),
set

Gξ←η := {g ∈ G : g · η = ξ}.

For any choice of elements x, y ∈ G with x · ξ(t) = ξ and y · ξ(t) = η, we obtain a
bijection H ∼= Gξ←η given by s 7→ xsy−1. We equip Gξ←η with the transport of
the Haar measure on H, as normalized in §1.5. The measure so-defined on Gξ←η
is independent of the choice of x, y.

Lemma. Let I be as defined above, with ϕ1, ϕ2 supported on {ξ : Λ(ξ) < 0}. Then

I =

∫
t>0

∫
ξ,η∈O(−t2)

ϕ1(ξ)ϕ2(η)

(∫
Gξ←η

Φ

)
dω(ξ) dω(η)

dt

2π
. (8.4)

Proof. Although both sides of the identity are independent of all choices of Haar
measure, it is convenient to make explicit choices for the proof. Recall the coordi-
nates and notation of §6.1. We assume that dx = 1

πdx1 dx2 dx3. This normalizes

a Haar measure dg on G, as well as the dual measure dξ = 1
8π2 dξ1 dξ2 dξ3 on g∧.

We equip G/H with the quotient measure dg. We note in passing that H meets
both connected components of G, so the quotient G/H could be replaced by the
quotient G1/H1 of connected groups in what follows.

Let t > 0. We first explicate the value ωξ(t) of the canonical 2-form ω on O(−t2)
(§6.2) at the point ξ(t). Under the differentiated orbit map g → Tξ(t)(O(−t2)), we
have e2 7→ −2te∗3 and e3 7→ 2te∗2. Thus ωξ(t)(−2te∗3 ∧ 2te∗2) = ⟨ξ(t), [e2, e3]⟩/2πi =
2t/2π, and so ωξ(t) =

1
4πtdξ2 ∧ dξ3.
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Let β = 1
8π2 dξ1 ∧ dξ2 ∧ dξ3 denote the differential form on g∧ corresponding to

dξ. Then βξ(t) =
t
2πdξ1 ∧ ωξ(t). This implies the integral formula∫

ξ∈g∧
ϕ(ξ) dξ =

∫
t>0

(∫
O(−t2)

ϕ

)
t dt

2π

for ϕ supported on ∪t>0O(−t2).
On the other hand, the Haar measure on H corresponds to the Haar measure on

h = Lie(H) given by dx1. The induced quotient measure on G/H corresponds to
the differential form on g/h given at the origin by 1

πdx2∧dx3. Under the orbit map

isomorphism g/h ∼= Tξ(t)O(−t2), we have 1
πdx2 ∧ dx3 7→ ± 1

4πt2 dξ2 ∧ dξ3 = ± 1
tωξ(t).

This implies the integral formula∫
O(−t2)

ϕ = t

∫
g∈G/H

ϕ(g · ξ(t)) dg.

Combining the formulas established thus far, we obtain

I =

∫
g∈G

Φ(g)

∫
t>0

∫
ξ∈O(−t2)

ϕ1(g · ξ)ϕ2(ξ) dω(ξ)
t dt

2π
dg

=

∫
g∈G

Φ(g)

∫
t>0

∫
y∈G/H

ϕ1(g · ξ(t))ϕ2(y · ξ(t)) dy
t2 dt

2π
dg

=

∫
t>0

∫
x,y∈G/H

ϕ1(x · ξ(t))ϕ2(y · ξ(t))
∫
s∈H

Φ(xsy−1) ds dx dy
t2 dt

2π
,

which simplifies to the required formula. □

We now verify (1.20), which we copy here for convenience:

I(f) =
∫
s∈H

⟨sΨw1 ,Ψw2 ⟩ ds
∫
t>0

k(−t2)2 dt
2π

+O(hδ). (1.20)

Using (6.10) and (7.28), we compute that w · f(g) = f(g−1), hence Sf = f+w·f
2 ,

and so

I(f) =
∫
g∈G

⟨g · f, f⟩GΦ(g) dg, Φ(g) := ⟨gΨw1 ,Ψw2 ⟩. (8.5)

We compatibly normalize Haar measures on G, g and g∧ as above. By change of
variables and Parseval, we then have

⟨g · f, f⟩G =

∫
x∈g

jac(x)f(g−1 exp(x)g)f(exp(x)) dx

= h3⟨g · b∨h , b∨h ⟩g
= ⟨g · b, b⟩g∧ .

As explained in §3.1.6, all of these integrals converge absolutely. For instance,
we have Φ(g) ≪ ∥Ad(g)∥−η for some fixed η > 0 by standard bounds for matrix
coefficients (§3.1.5), while ⟨g · b, b⟩g∧ ≪ ∥Ad(g)∥−1 by direct calculation. Since∫
g∈G ∥Ad(g)∥−1−η dg < ∞, the required convergence follows. The same argument

gives also that for any c1, c2 ∈ S−∞δ ,∫
g∈G

Φ(g)⟨g · c1, c2⟩g∧ dg ≪ 1. (8.6)
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Using (8.6) as an a priori estimate and inserting the asymptotic expansion b ∼∑
j⩾0 bj noted previously, we deduce that for each fixed N ⩾ 0, there is a fixed

J ⩾ 0 so that

I(f) =
∑

0⩽j1,j2<J

Ij1,j2 +O(hN ), Ij1,j2 :=

∫
g∈G

Φ(g)⟨g · bj1 , bj2⟩g∧ dg.

The above lemma gives, with Φ′(ξ, η) :=
∫
Gξ←η

Φ, that

Ij1,j2 =

∫
t>0

∫
ξ,η∈O(−t2)

Φ′(ξ, η)bj2(ξ)bj1(η) dω(ξ) dω(η)
dt

2π
. (8.7)

Using the orbit map at ξ(t) ∈ O(−t2), we can view Φ′ as a function on (G/H)2.
Using the absolute convergence of the integral defining Φ′ and the smoothness of
the vectors Ψ1,Ψ2, we see that the function Φ′ is smooth (see [35, §18] for re-
lated arguments). In particular, Φ′ is Lipschitz near the origin, where it takes
the value Φ′(ξ(t), ξ(t)) =

∫
H
Φ. On the other hand, the factor bj2(ξ)bj1(η) van-

ishes unless ξ, η = ξ(t) + O(hδ); in that case, it is bounded in magnitude by

O(h−4δ+(1−2δ)(j1+j2)), and we have Φ′(ξ, η) =
∫
H
Φ+O(hδ). The volume of the set

of such pairs (ξ, η) is O(h4δ). It follows that

Ij1,j2 ≪ h(1−2δ)(j1+j2) .

In particular, since δ is sufficiently small, we have Ij1,j2 ≪ hδ if (j1, j2) ̸= (0, 0).
On the other hand, since b0 = a2 and

∫
O(−t2) a

2 = k(−t2), we have

I0,0 =

(∫
H

Φ

)∫
t>0

k(−t2)2 dt
2π

+O(hδ).

This completes the proof of the required estimate for I(f).

Remark. An alternative proof may be obtained by first decomposing ⟨g · f, f⟩
over the spectrum of L2(G) as the integral of the Hilbert–Schmidt inner prod-
ucts ⟨π(g)π(f)π(g)−1, π(f)⟩. This decomposition is reflected above, in (8.7), at the
level of coadjoint orbits.

8.3. Error estimates. We now prepare for the verification of (1.21), which re-
quires some Lie-theoretic preliminaries. We begin with some trivial remarks con-
cerning the complex plane which we hope convey a useful reference picture for the
estimates to follow. There are two common choices of coordinates: the rectangu-
lar coordinates, described by real and imaginary part, and the polar coordinates,
described by radius and angle. The former is adapted to addition, the latter to
multiplication. If we restrict the radius to a fixed compact subset of the positive
reals and the angle to a sufficiently small neighborhood of the origin, then the real
part is likewise restricted to a fixed compact subset of the positive reals; moreover,
the imaginary part and the angle are bounded from above and below by constant
multiples of one another. These restrictions define a region in the complex plane.
Given a scalar-valued function ϕ on that region and a small scaling parameter
h > 0, there are two natural ways to rescale ϕ so that its support concentrates
along the positive reals: in rectangular coordinates (by scaling the imaginary part)
or in polar coordinates (by scaling the angle). The two classes of rescaled functions
obtained in this way resemble one another. We aim now to record some analogues
and elaborations of these observations with the complex numbers replaced by the
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2×2 matrix algebra M . Such considerations are natural because we are ultimately
studying a problem in multiplicative harmonic analysis (the variance sums V(f)
attached to test functions f on the group G = PGL2(R)) using additive harmonic
analysis (via theta functions attached to Schwartz functions ♡τf on the matrix
algebra M =M2(R)).

We denote by g = sl2(R) the Lie algebra of G. We may identify g with the
subspace of traceless elements in M ; then M = R ⊕ g, where R is the subspace of
scalar matrices.

Let R ⊆ R×+ and G ⊆ g be precompact open subsets. We assume that 0 ∈ G
and that G is star-shaped: hG ⊆ G for h ∈ [0, 1]. We assume that G is taken small
enough in terms of R; in particular, we assume that the map

R× G ∋ (r, x) 7→ r1/2 exp(x) ∈ GL+
2 (R)

is an analytic isomorphism onto its image, which we denote by M. We write

(ρ, θ) : M → R× G

for the inverse isomorphism. Thus for v ∈ M, we have ρ(v) =
√

det(v), while θ(v)
is the logarithm of the image of v in G. We informally regard ρ(v) and θ(v) as the
respective radial and angular parts of v.

Every element of M2(R) may be written uniquely in the form t+u, where t ∈ R
and u ∈ g. Write γ(t, u) = (ρ(t, u), θ(t, u)) =: (r, x), say. Then

r =
√
t2 − u2, x =

1

2
log

t+ u

t− u
.

We informally regard (t, u) and (r, x) as the respective rectangular and polar coor-
dinates on M.

Since G is small, we have t ̸= 0. Thus r, t are both constrained to lie in compact
subsets of R×, and so

|r| ≍ 1 ≍ |t|. (8.8)

Moreover,

|x| ≍ |u|. (8.9)

Indeed, we may expand the analytic map

R⊕ g ∋ (t, u) 7→ θ(t+ u) ∈ G (8.10)

as a Taylor series
∑
n⩾1 cn(u/t)

n, and similarly for the inverse map. By (8.8), it
follows that x and u tend to zero simultaneously and at the same rate. Since the
magnitudes of both are bounded from above, we deduce (8.9).

We now fix a cutoff q ∈ C∞c (M) and define a family of maps of Schwartz spaces

S(g) → S(M), ϕ 7→ Φh,

indexed by h ∈ (0, 1), by the formula

Φh(t+ u) := q(t+ hu)ϕ(h−1 θ(t+ hu)).

Informally, Φh is obtained from Φ1 by rescaling in two stages: first shrinking the
angular support in polar coordinates, then stretching the imaginary support in
rectangular coordinates. The reference picture discussed above hopefully renders
the following observation unsurprising:

Lemma. The family of maps ϕ 7→ Φh is equicontinuous for the Schwartz topology.
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Proof. The derivatives of the map (t, u) 7→ q(t+ hu) are uniformly bounded.
Moreover, the derivatives of the map (t, u) 7→ h−1 θ(t + hu) are bounded, uni-

formly for t + hu ∈ supp(q). Indeed, we may write each such derivative as a
convergent Taylor series; applying the triangle inequality gives a finite bound for
the magnitude of this series, and the observation following (8.10) implies that this
bound improves as h decreases.

By the chain rule, we deduce that the derivatives of Φh at t+ u are dominated
by derivatives of ϕ at those elements h−1 θ(t+hu) for which t+hu ∈ supp(q). For
such elements, the estimates (8.8) and (8.9) give |t| ≍ 1 and |h−1 θ(t+ hu)| ≍ |u|.
Thus the rapid decay of the derivatives of Φh follows from that of ϕ. □

We now apply these considerations to establish (1.21), which we copy here for
convenience:

Eτ1,τ2(♡τ1f,♡τ2f) ≪ h1−δ
′
. (1.21)

Let τ ∈ {τ1, τ2}. We assume R taken large enough to contain the support of
r 7→ W (τr), and take G small enough. We may assume that Op was defined with
respect to a cutoff supported in G. Set

qτ (v) :=
W (τρ(v)2)

|τρ(v)2|
jac−1/2 χ′(θ(v))

and ϕ := b∨, with b as in §8.1. We see then by unwinding the definitions that for
v ∈ M,

♡τf(v) = qτ (v) h−3/2 ϕ(h−1 θ(v)).

Let Φτh be defined as in §8.3 using qτ and ϕ. Then ♡τf(t+hu) = h−3/2 Φτh(t+ u).
We may express this identity in terms of the normalized dilation operators Dy (see
§1.8) as

♡τf = D1/ hΦ
τ
h,

so by Theorem 3,

Eτ1,τ2(♡τ1f,♡τ2f) = Eτ1,τ2(D1/ hΦ
τ1
h , D1/ hΦ

τ2
h ) ≪ h1 log(h−1)C(Φτ1h )C(Φτ2h ),

for some fixed continuous seminorm C. We appeal now to the (h-uniform) continuity
of ϕ 7→ Φτh noted in §8.3, together with the continuity of the map a 7→ b composed
with the Fourier transform b 7→ b∨ = ϕ, to write C(Φτ1h )C(Φτ2h ) = O(C(a)2) for

some fixed continuous seminorm C on S(g∧). The definition of S−∞δ implies that

C(a) ≪ h−Nδ for some fixedN ∈ Z⩾0, so we may conclude by taking δ′ := (2N+1)δ.

Remark. The proof of (1.21) recorded above is a bit different from that of the corre-
sponding estimate in [29], whose analogue here would be to exploit the smoothness
of Ψ and the diagonal G-invariance of (f,Ψ) 7→ µ(π(f),Ψ) (i.e., the “SO(B0

S)-
invariance” noted in Theorem 4) to “fatten up” the symbol a under the adjoint
action. The argument given here produces weaker estimates, but is a bit shorter
and simpler.

The proof of Theorem 1 is now complete.

8.4. The holomorphic analogue. Central to our analysis of microlocal lifts of
Maass forms was the definition (6.1) of ξ(t) ∈ O(−t2). We may reformulate our
definition of H and choice of w as follows:

• H is the centralizer of ξ(t) (for t ̸= 0).
• w is an element of N(H)−H. Then ξ(t) = −w · ξ(t).
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For the proof of the holomorphic analogue (Theorem 2), we take instead

ξ′(t) = i

(
0 −t
t 0

)
∈ O(t2).

ThusX(ξ′(t)) = Y (ξ′(t)) = 0, whileW (ξ′(t)) = t. We chooseH and w analogously:

H = K1, w =

(
0 1
1 0

)
∈ N(H)−H = K −K1.

The relevant orbits are now the O(t2) rather than the O(−t2). The relevant repre-
sentations are now the π ∈ A0 with λπ = (k − 1/2)2 > 0 for some natural number
k. Recall from §1.7 that for such π, we define µπ to be the L2-mass of a normalized
lowest weight vector φπ. One can motivate the definition of ξ′(t), as in §7.1, in
terms of the approximate symmetries of φπ. As partial motivation, we note that
Wφπ =W (ξ′(k))φπ.

The analogue of Lemma 2 of §6.6 remains valid, with the same proof.
The analogue of Lemma 2 of §7.1, obtained by

• replacing the assumption λπ < 0 with λπ > 0, and
• replacing τ = ξ(

√
−Ωπ) with τ = ξ′(

√
Ωπ),

remains valid, by similar arguments.
In §7.3, we now define K̃ by requiring that a be supported in a O(hδ) neighbor-

hood of some fixed compact subset of {ξ′(t) : t > 0} and satisfy a(−(w · ξ)) = a(ξ),
with the “new” value of w. We define K ⊆ C∞c (R>0) analogously. The analogue of
the lemma of §7.3 then holds, with the same proof.

The discussion of §8.1 applies upon replacing each occurrence of −λπ with λπ.
Once we have chosen the measure on H carefully, the lemma of §8.2 will hold

upon replacing Λ(ξ) < 0 with Λ(ξ) > 0 in the support condition and O(−t2) with
O(t2) in the integral, with Gξ←η defined analogously using the “new” definition
of H. The proof boiled down to a calculation with differential forms. This can
be carried out after complexifying and conjugating ξ′(t) to a diagonal matrix, at
which point the same calculation applies. For the normalizations to be consis-
tent, we need the Haar measure on H to correspond to the 1-form on h that, after
complexifying and conjugating H to the diagonal subgroup, is given in the coor-
dinates of §6.1 by dx1. We verify readily that the appropriate Haar on H is thus∫
H
f :=

∫
θ∈R/2πZ f(e

iθW ) dθ. In particular, vol(H) = 2π.

The error estimates (§8.3) go through without modification.
We obtain in this way a result exactly analogous to Theorem 1, but with the

condition 0 < −h2 λπ < 1 replaced by 0 < h2 λπ < 1. We simplify by evaluating∫
s∈H⟨sΨw1 ,Ψw2 ⟩ ds = 2π⟨Ψ1,Ψ2⟩, using here that each Ψi is invariant under K (and

thus also under H and w). The proof of Theorem 2 is then complete.

9. Concluding remarks

9.1. Removing the arithmetic weights. Here we fulfill the promise made in
Remark 4 of §1.6 by explaining (a bit informally) how the modification factor (1.12)
obtained by Sarnak–Zhao arises from the perspective of our method. Recall that
ιπ = L(S)(adπ, 1). The idea is to write the desired unweighted variance sums

lim
h→0

h
∑

0<− h2 λπ<1

µπ(Ψ1)µπ(Ψ2)
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as the double limit

lim
h→0

lim
S′
V (S′), V (S′) := h

∑
0<− h2 λπ<1

L(S′)(adπ, 1)µπ(Ψ1)µπ(Ψ2), (9.1)

where limS′ denotes the limit taken over increasing finite subsets S′ ⊇ S of the
set of finite primes of F , ordered by inclusion. We then try to swap the limits.
The subtlety in making this precise is that the Euler product of L(adπ, 1) fails to
converge absolutely, but because 1 is at the edge of the critical strip, the failure
is mild, so we at least expect the naive swapping of limits to produce the correct
answer. Theorem 4 applies to any S′ ⊇ S; combining it with the estimates of Part
2 shows that as far as main terms are concerned,

V (S′) ≈ V (S)
∏

p∈S′−S
cσ(p),

where

cσ(p) :=
1

ζp(2)Lp(σ,
1
2 )

∫
g∈PGL2(Fp)

⟨g · f, f⟩PGL2(Fp)Φ(g),

where

• ζp(s) = (1− |p|−s)−1 denotes the local zeta function for Fp,
• Lp(σ, s) = (1−λσ(p)p−s+p−2s)−1 denotes the local factor for L(σ, s) at p,
• we fix an arbitrary Haar measure on PGL2(Fp) (the quantity cσ(p) will not
ultimately depend upon this choice),

• f is the normalized characteristic function vol(Jp)
−11Jp of a maximal com-

pact subgroup Jp of PGL2(Fp),
• g · f(x) := f(g−1xg) as usual, and
• Φ is the normalized bi-Jp-invariant matrix coefficient of the unramified
representation of PGL2(Fp) corresponding to the action of Tp on σ, so that

for instance Φ(1) = 1 and Φ(diag(ϖ, 1)) = λσ(p)
|p|1/2+|p|−1/2 , with ϖ ∈ Fp a

uniformizer.

The modification factor (1.12) is then explained by the following local calculation:

Lemma. cσ(p) =
1

ζp(2)
(1− λσ(p)

|p|3/2+|p|1/2 ).

Proof. This follows by direct calculation with the Macdonald formula [5, Thm 4.6.6]
and the Cartan decomposition; we leave it to the interested reader. □

9.2. Heuristics. In this section, we record a heuristic derivation of the limiting
variance (1.10) obtained in our main result (or more precisely, its unweighted variant
discussed in §9.1). This serves both to check of the correctness of our results and
to offer some perspective on the deviation in behavior of variance sums between
arithmetic and non-arithmetic settings.

9.2.1. Overview. We revoke our general assumptions by taking for Γ any discrete
cocompact subgroup of G (possibly non-arithmetic). The definitions of §1.5 adapt
fairly painlessly to this setting, possibly after making some choices in the event of
eigenvalue multiplicities. We fix Ψ ∈ C∞(Γ\G) of mean zero (not necessarily an
eigenfunction) and suppose given some unit vectors vπ ∈ π for each π in some vary-
ing family F ⊂ A0 (e.g., we might take for vπ the vectors defined at the beginning
of §7.1, so that the microlocal lifts are given asymptotically by Ψ 7→ ⟨vπΨ, vπ⟩).
Our aim is to understand the asymptotics of the variance sums

∑
π∈F |⟨vπΨ, vπ⟩|2.
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Translated into representation-theoretic language, the basic idea underlying
the semiclassical predictions (see [7], [51, §15.6], [36, §4.1.3]) in the generic non-
arithmetic setting is to postulate that

|⟨vπΨ, vπ⟩|2 ≈ |⟨vπΨ, vπ′⟩|2 (9.2)

whenever π′ and π are “close” (denoted π′ ≈ π) as quantified by their isomorphism
classes under the group G. Then∑

π∈F
|⟨vπΨ, vπ⟩|2 ≈

∑
π∈F

Eπ′≈π|⟨vπΨ, vπ′⟩|2. (9.3)

The right hand side of (9.3) may often be studied rigorously via semiclassical anal-
ysis, leading to predictions concerning the left hand side.

This heuristic often requires some modification. One way that (9.2) can fail is
when the representations π ∈ F are self-dual, i.e., equal to their complex conjugates
π (the representation-theoretic incarnation of “time-reversal symmetry”); in that
case,

⟨vπΨ, vπ⟩ = ⟨vπΨ, vπ⟩ with vπ ∈ π.

Suppose for concreteness that vπ = wvπ for some involutory element w ∈ G. It
follows then that the distributions Ψ 7→ ⟨vπΨ, vπ⟩ are w-invariant. On the other
hand, there is no obvious reason to suspect that the more general distributions
Ψ 7→ ⟨vπΨ, vπ′⟩ are w-invariant when π′ ̸= π, so (9.2) can fail, most obviously when
wΨ = −Ψ. The simplest way to repair this failure is to restrict from the outset to
observables Ψ for which wΨ = Ψ.

Another way that (9.2) can fail is if the space Γ\G admits a nontrivial correspon-
dence T . We may assume then that π and π′ are T -eigenspaces with eigenvalues
λ and λ′. These eigenvalues may bias the asymptotics of ⟨vπΨ, vπ′⟩. The bias is
most striking when T is an involution and TΨ = Ψ, in which case parity consider-
ations imply that ⟨vπΨ, vπ′⟩ = 0 unless λ = λ′. Thus (9.2) fails. We can repair it
by strengthening the closeness condition π′ ≈ π to require also that λ′ ≈ λ. The
right hand side (9.3) can now be estimated using semiclassical analysis on “G×T ,”
leading to a modification of the expected variance asymptotics. For instance, in
the case of an involution, the modification is given by doubling; the factor 2#S in
Theorem 1 may be explained in this way in terms of the involutory Hecke operators
Tp (p ∈ S).

Such modified heuristics extend easily to finite commuting families of correspon-
dence, but their further extension to arithmetic settings as in Theorem 1, with
infinitely many commuting correspondences Tp, requires some care. A naive ap-
proach is to run the heuristics first taking into account only those Tp for p belonging
to some large finite set P , and then to take the limit as P increases. We implement
this naive approach in detail below. We will encounter main terms involving finite
Euler products

∏
p∈P Lp(σ,

1
2 ). Modulo the subtle business of identifying these with

their formal limit, we will see that the resulting predictions are consistent with our
rigorous results and also with the triple product formula and L-function analysis.
Peter Sarnak pointed out to us that this consistency is analogous to the heuris-
tic derivation of the Birch–Swinnerton-Dyer conjecture via the Hardy–Littlewood
method.

9.2.2. General predictions. Turning to details, choose a Haar measure on G and
denote by G∧ the tempered dual, equipped with Plancherel measure. Equip Γ\G



QUANTUM VARIANCE ON QUATERNION ALGEBRAS, III 63

with the quotient Haar. Suppose given a nice subset F̃ of G∧ and a nice function
f : G→ C such that

• for π ∈ F̃ , the operator π(f) is the orthogonal projection onto the line Cvπ
spanned by some unit vector vπ ∈ π, and

• for π /∈ F̃ , we have π(f) = 0.

(In practice, such assumptions are satisfied exactly only for p-adic groups G;

for real groups, one should instead smoothly weight the family F̃ and work
with families of vectors in each π ∈ F̃ , as illustrated in the bulk of this pa-
per. We omit such technicalities from this heuristic discussion to keep the ex-
position clean.) We then have the spectral decomposition f(g) =

∫
π∈F̃ ⟨vπ, gvπ⟩

and the formula
∫
π∈F̃ |⟨gvπ, vπ⟩|2 = ⟨g · f, f⟩, with g · f(x) = f(g−1xg) as be-

fore and the latter inner product taken in L2(G). We take for F ⊂ A0 the

set of all π whose isomorphism class belongs to F̃ . The pretrace formula reads∑
π∈F vπ(x)vπ(y) =

∑
γ∈Γ f(x

−1γy) =
∑
γ∈Γ

∫
π∈F̃ ⟨xvπ, γyvπ⟩. Dividing this by

the Weyl law #F ≈ vol(Γ\G) vol(F̃) gives

Eπ∈Fvπ(x)vπ(y) ≈
1

vol(Γ\G)
∑
γ∈Γ

Eπ∈F̃ ⟨xvπ, γyvπ⟩, (9.4)

where E denotes the average (taken with respect to the counting measure on F and

the Plancherel measure on F̃).

Suppose temporarily that F̃ is sufficiently concentrated near some given π ∈ A0

that ⟨gvπ′ , vπ′⟩ ≈ ⟨gvπ, vπ⟩ for all π′ ∈ F̃ . Then (9.4) simplifies to

Eπ′∈Fvπ′(x)vπ′(y) ≈
1

vol(Γ\G)
∑
γ∈Γ

⟨xvπ, γyvπ⟩. (9.5)

Assume that quantum ergodicity holds in the strong form

⟨g(vπΨ), vπΨ⟩ ≈ 1

vol(Γ\G)
⟨gvπ, vπ⟩⟨gΨ,Ψ⟩, (9.6)

at least on average over π. From (9.5), (9.6) and “unfolding,” we obtain

Eπ′∈F |⟨vπΨ, vπ′⟩|2 ≈ 1

vol(Γ\G)2

∫
g∈G

|⟨gvπ, vπ⟩|2⟨gΨ,Ψ⟩. (9.7)

We now relax our assumption that F̃ be concentrated and consider fairly general
families. By the Weyl law, we expect∑

π∈F
|⟨gvπ, vπ⟩|2 ≈ vol(Γ\G)

∫
π∈F̃

|⟨gvπ, vπ⟩|2 = vol(Γ\G)⟨g · f, f⟩. (9.8)

Suppose that the heuristic (9.2) holds. We may then apply (9.7) to the family
{π′ : π′ ≈ π}, substitute the result into (9.3), and appeal to (9.8), giving the
prediction ∑

π∈F
|⟨vπΨ, vπ⟩|2 ≈ 1

vol(Γ\G)

∫
g∈G

⟨g · f, f⟩⟨gΨ,Ψ⟩ (9.9)

subject to the modifications indicated above in the case of the “time-reversal sym-
metry” π = π or the presence of nontrivial correspondences on Γ\G.

We note that this argument applies to fairly general quotients Γ\G. This gener-
ality will be exploited below.

In the following, we specialize (9.9) in three ways.
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9.2.3. Generic non-arithmetic lattices. First, we take G := PSL2(R), Γ ⩽ G a
“generic” (i.e., trivial commensurator) non-arithmetic cocompact lattice, vπ as in

§7.1, and F̃ = {π : 0 < − h2 λπ < 1} (the relevant definitions apply equally well to
PSL2(R) as to PGL2(R)). We may take f essentially (i.e., up to the constant factor

h1/2) as in §8.1, with k approximating the characteristic function of the interval

(−1, 0). We assume that π = π and that Ψ is invariant by w =

(
0 1
−1 0

)
∈ G. By

the analogue of (1.20) for PSL2(R), the prediction (9.9) simplifies to

h
∑

0<− h2 λπ<1

|µπ(Ψ)|2 ≈ 1

2π vol(Γ\G)

∫
u∈R

⟨
(
eu/2

e−u/2

)
Ψ,Ψ⟩ du,

which may be seen to agree with the prediction of [7].

9.2.4. Arithmetic lattices. Second, we address the setting of Theorem 1. We focus
for simplicity on the diagonal case Ψ ∈ σ ∈ A0, and assume that Ψ = Ψsym as in
(1.11). Our task is accomplished most directly by applying (9.2.2) to the adelic
quotient G(F )\G(A) (notation as in §1.5), which has the effect of incorporating
the nontrivial correspondences on the real quotient. We take for f a tensor product
⊗pfp over the places p of F , where the local factor fq at the distinguished real
place q is as in the previous paragraph and the remaining fp are the normalized
characteristic functions of compact open subgroups Jp as in §1.5. The (absolutely
divergent) integral on the right hand side of (9.9) factors (formally) as a product∏
p Ip of local integrals over all places p of F ; at places other than q, the component

of ⟨gΨ,Ψ⟩ is the normalized bi-Jp-invariant matrix coefficient of σ at p, as in §9.1,
while at q we take the usual matrix coefficient. The local integrals Ip have been
computed. The local integral Iq is given by (8.5). For archimedean places p other
than the distinguished real place q, we have Ip = 1 by (3.16). For finite primes
p ∈ S, we have Ip = 2 by (3.15). For finite primes p /∈ S, we have Ip = Lp(σ,

1
2 )(1−

λσ(p)
|p|3/2+|p|1/2 ) by §9.1. Modulo identifying

∏
p/∈S Lp(σ,

1
2 ) with L

(S)(σ, 12 ), we derive

from (9.9) the prediction

h
∑

0<− h2 λπ<1

|µπ(Ψ)|2 ≈ c′σ
2π vol(Γ\G)

∫
u∈R

⟨
(
eu/2

e−u/2

)
Ψ,Ψ⟩ du,

c′σ := 2#S+1L(S)(σ, 12 )
∏
p/∈S

(1− λσ(p)

|p|3/2 + |p|1/2
).

We verify readily that this prediction agrees with the unweighted variant of Theo-
rem 1 discussed in §9.1.

9.2.5. Comparison with L-function heuristics. Thirdly, we verify that the predic-
tions of §9.2.2, and hence likewise our main results, are (unsurprisingly) consistent
with the triple product formula and standard heuristics for averages of families of
L-functions. We include this discussion not only as a further check of our calcula-
tions, but also because we feel that it offers an interesting semiclassical perspective
on the triple product formula itself.

We continue to take Γ\G = G(F )\G(A). Equip G(A) with Tamagawa measure,
so that vol(Γ\G) = 2, and factor the measure on G(A) over the places v of F in
such a way that for p /∈ S, the local measure at Gp = G(Fp) assigns volume one to
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a maximal compact subgroup. The main result of [13] then says that for vπ and Ψ
unramified outside S,

|⟨vπΨ, vπ⟩|2 =
1

8
ℓ(S)(π, σ)w(π),

where

ℓ(S)(π, σ) := ζ
(S)
F (2)2

L(S)(π ⊗ π ⊗ σ, 12 )

L(S)(adπ, 1)2L(S)(adσ, 1)

and w(π) :=
∏
v∈S

∫
g∈

∏
v∈S Gv

|⟨gvπ, vπ⟩|2 ⟨gΨ,Ψ⟩. We assume (for simplicity, and

without loss of generality) that our family F̃ has been chosen sufficiently con-
centrated that the weight π 7→ w(π) is essentially constant over its support. By
comparing with (9.2) and (9.7), we see that our predictions translate to

Eπ∈Fℓ(S)(π, σ) ≈
8

vol(Γ\G)2
∏
p/∈S

Ip,

where Ip is as above. (As before, the product diverges and is to be understood

formally; in particular, it hides the factor L(S)(σ, 12 ).) We may spectrally expand

Ip as the integral over unramified πp ∈ G∧p of the integral
∫
g∈Gp

Ξπp
(g)2Ξσp

(g)

of normalized unramified matrix coefficients. Ichino–Ikeda [14, Theorem 1.2] have
shown that the latter integral evaluates to the local Euler factor ℓp(πp, σp) for

ℓ(S)(π, σ), so that in fact

Ip =

∫
unramified πp∈G∧p

ℓp(πp, σp). (9.10)

We may factor L(π⊗π⊗σ, 12 ) = L(adπ⊗σ, 12 )L(σ,
1
2 ). The family π 7→ L(adπ⊗σ, 12 )

is self-dual with positive root numbers (assuming σ even) and orthogonal symmetry
type, so random matrix heuristics (see, e.g., [35, §1.2]) predict that

Eπ∈Fℓ(S)(π, σ) ≈ 2
∏
p/∈S

Ip,

with Ip as given by (9.10). Since 8/ vol(Γ\G)2 = 2, those heuristics are consistent
with ours.

Acknowledgements. We would like to thank Peter Sarnak for encouragement
and Raphael Steiner for many helpful comments and corrections on an earlier draft.
We gratefully acknowledge the support of NSF grant OISE-1064866 and SNF grant
SNF-137488 during the work leading to this paper.

References

[1] Nalini Anantharaman and Steve Zelditch. Patterson-Sullivan distributions and quantum er-

godicity. Ann. Henri Poincaré, 8(2):361–426, 2007.
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