1. PETER KOYMANS, Hilbert 10 via additive combinatorics
Let’s start with a question of Hilbert from the influential 1900 conference:

Question 1. Does there exist an algorithm with
e INPUT: f € Z[x1,...,2y]
e OUTPUT: “YES” if there is a solution ay,...,a, € Z to f(a1,...,a,) =0,
“NO” if not?

Let’s give a brief overview of the history of this question:

Definition 2. A subset S C Z is called Diophantine if there exists an integer
m > n and a polynomial f € Z[z1,...,x,] such that

S=A{(a1,...,an) € Z" | there exists ant1,. 4, €Z, flai,...,am)=0}.

In other words, take the solution set to a polynomial equation and project it onto
some coordinates.

A bit of history:
e 1951 (Julia Robinson): A certain hypothesis JR implies that

EXP := {(a,b,c) e N’ : a = b}

is Diophantine. A key ingredient is Pell’s equation.

e 1960 (DPR): The exponential Diophantine sets are exactly the recursively
enumerable RE sets, meaning, those sets all of whose elements can eventu-
ally be listed (exactly) by an algorithm if we let it run forever.

e A corollary of this is that JR implies that Hilbert’s 10th problem is unde-
cidable. For instance, the Halting Problem is RE.

e 1970 (Matiyasevich): Proved JR.

Theorem 3 (Mazur-Rubin). Let R be a finitely-generated ring over Z, with |R| =
0o. Assume that for all number fields K, and all elliptic curves E over K, that
the Tate-Shafarevich group Sha(E/K) is finite. Then Hilbert’s 10th problem is
undecidable over R.

Theorem 4 (Koymans—Pagano, 2024). Same result, unconditionally.

Theorem 5 (Koymans—Pagano, 2024). Let K be a number field. Then Z is Dio-
phantine over Ok

Let

Theorem 6 (Koymans—Pagano). Let K be a number field with > 32 real embed-
dings. Then there exists E/K such that rank F(K) = rank E(K (7)) > 0.

The proof that Theorem [6] implies Theorem [4] uses the following:

Lemma 7. Let K C L be number fields. Then:

(i) If D1, Dy are Diophantine over Ok, then so is D1 N Da.
(i) If D C Ok is Diophantine over Ok, and also Ok is Diophantine over Oy,
then D is Diophantine over Orp,.
(#i) If Z is Diophantine over Oy, then Z is Diophantine over Ok .
(iv) If K is totally real, then Z is Diophantine over Ok .
(v) If E satisfies rank E(K) = rank E(L) > 0, then Ok is Diophantine over Of,.
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Assuming the above:

Proof that Theorem [ implies Theorem[]} Let K be a number field. We want to
show that Z is Diophantine over Og. Define M to be the Galois closure of
K(i,v/2,...,4/13). Tt suffices to show that Z is Diophantine over Oy, by .
Taking the decomposition group D C Gal(M/Q) at an infinite place, we must have
1¢ MP =: L. Thus M = L(i). Hence by Theorem@ and (v)), we know that Op/p
is Diophantine over O);. Hence by , we see that

(N Ob.

DCGal(M/Q)
D decomp. at co

is Diophantine over O);. We may write the above as Op, with

F = ﬂ MP.

DCGal(M/Q)
D decomp. at oo

But F' is totally real, so Z is Diophantine over Op by , hence Z is Diophantine
over Oy by . O

Let’s now give the proof of Theorem [f]
We first discuss 2-Selmer groups. Take the Galois cohomology of Gk =
Gal(K/K). Look at

0—>E[2]—>E£>E—>0.

This gives
0— E(K)[2] —» E(K) 2% B(K) % H Gk, E[2)),
2]2(5{)) % HY(Gk, E[2)).

The first term is an Fa-vector space of dimension
rank F(K) + dimyp, F(K)[2].
We can also do the same diagram for each place v of K. You can check that this

whole thing gives a commutative diagram

0 —— B2 —— B(K) —2» B(K) —— HYGg,E[2])

0 —— B(K,)[2] —— E(K,) —2 B(K,) —2— H'(Gx,,E[2)
i+t
0= E(K)[2] = E(K) 2 E(K) LN HY(Gxk, E[2]) =% HY(Gk,, E[2))
and
0 — E(K,)[2] » E(K,) >3 B(K,) 2 H (Gk,, E[2)).

Hence Sel?(E/K) := ker(H (Gx, E[2]) 1% HY(G ., E[2])/ image(s,)).

(1) Ifimage(d) C Sel?(E/K), then rank F(K)+dimp, E(K)[2] < dimg, Sel*(E/K).

(2) Sel*(E/K) is computable and finite-dimensional.
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Let’s now discuss forcing positive rank. Take E with E(K)[2] = F2, i..,
y? = (x — a1)(z — a2)(x — a3) with ay,a2,a3 € K distinct. Twisting by ¢ =
(n —ay)(n — az)(n — ag) gives a new elliptic curvge ty? = (v — a;)(x — az)(x — az)
with rational point (z,y) = (0,1). Twisting by ¢ := (n — a1d)(n — a2d)(n — asd)
gives a new curve with rational point (z,y) = (2, 75).

Since i ¢ K, we have rank E*(K(i)) = rank E*(K) suffices to find t = d(n —
a1d)(n—agd)(n—asd) with rank E~*(K) = 0. It suffices to show that dimg, Sel*(F/K) =
2, because this implies that rank E~*(K)[2] 4+ 2 < 2, whence rank E~*(K)[2] = 0.

So we need to control 2-Selmer groups. What’s the punchline? (We’ve talked
about Hilbert 10, but not yet additive combinatorics.) Fact: we can compute

Sel?(E/K) from Legendre symbols of primes dividing ¢.

2. MORTEN RISAGER, The error term in the hyperbolic circle problem

Let T' < SLy(R) be a discrete, cofinite subgroup that contains —1. A good
example is SLy(Z).

Let 2,2’ € H. We want to count how many I'-translates of z lie in a hyperbolic
circle based at 2/, with radius R — oo:

N(z,2',X):=#{yeT | du(yz,2") +2 < X}.

Here u(z,2') = zlglz(;)iél(i,) We note that 4u(vyz, z’) = 2 cosh(dg(yz,2')), so one can

formulate the counting problem in a few ways.
Selberg (1970’s) showed that
2
N(z,7,X) = WFVH)X + (contribution from small eigenvalues) + O(X?/3).
(Selberg never published this result, but he gave talks about it, and we have notes
from these talks available at the IAS.)

Question 8. Can O(X?/?) be improved? (Note that 2 = 1 + 1)

We have the Q-result of Phillips-Rudnick (°94): N(z, 2/, X)—M(X) = Q(Xz7?),
for each ¢ > 0.
What do we do when we don’t know how to bound something? We try to do

something easier: take an average of some sort. Look at the second radial moment.
Chamizo (’96):

1

2X 1/2
/ 2 _ 1/2
(X /X (N(z,7, X) = M(X)) dx> — O(X"/1og X).

Cherubini (2016):
O(X?10g"? X). (1)
Conjecture 9. N(z,2/,X)— M(X)=0(Xz+e).
Local averages. Biro (2018): take f of compact support, and z = z’. Then
. F(2) (N(2,2,X) = M(X)) du(z) = O(X2+5).
From now on, restrict to I' = SLy(Z). In that case, the main term is simply

6X. One can improve Phillips—Rudnick to Q(X 2 (log X )%_5) , and Cherubini to
O(X et te),



We want now to restrict to an even more arithmetic situations, where z = z4 and
2" = zg are both Heegner points. We want d and d’ to be different fundamental
squarefree discriminants, with 0 > d = b% — 4ac =1 (mod 4) and

—b++/|d]|
2a
Theorem 10. Second spacial moment: with I' = SLy(Z),

2 1/2 1,1
(/Q (N(z, 2, X) — M(X)) du(z)) = O(X3+%).
Let’s return to the theorem:

Theorem 11 (Chatzakos, Cherubini, Lester, Risager, 2025). Let I' = SLy(Z), and
d, d' are as above. Then we manage to prove

X2/3

N(Zd,Zd/,X) = bX + O(W)

We can furthermore improve () to O (X*/2 log3/8 X)

o po(x,y) := apz? + boxy + coy?, do = bodagcy
o p(r,y) = ax? + bxy + cy?, d = b? — 4ac
e codiscr(p, p) = 2(acy — cag) — bby.

Corollary 12. Fizd, dy (not equal to —3 (different squarefree fundmental discrim-
inants).

6h(d X2/3

(d) +0O( v )
Vddy (log gk1/2)
To understand N(z, 2/, X), it is useful to understand bounds on

S@i= > D XUei(a)e) < T

T<t;<2T T<t;<2T

na =1{p | a >0, discr(p) = d, 0 < (¢ — discr(p, po))} =

Here \; = i + j2 is an eigenvalue of Ap with eigenfunction g;(z).
We prove:

T2
ISXTI< D lei(za)e;(za) < (og T)I/A"
T<t;<2T

Using Waldspurger:

il <e X Ay
£€C(Q(V4))

Here f; is the theta series related to the class group character &.

o — L —

Theorem 13. Let d and d’ be different, £ € CI(Q(\/d)) and &' € C(Q(V/d')). Then

s Lo fo VL S (T
L(sym?¢;,1) (log T')1/4

T<t;<2T



In order to prove this, we needed
L(%?‘Pj Xf&) /\fs(g) 2 1
N 2277 0 JS7 — T Ti+ey
Etj h(t;) Lisym? p.1) () =Ch N/ + O( )
Here h localizes at [T, 2T).

3. ALAN ZHAO, A different perspective on Whittaker functions for GL,

3.1. Notation. Let A denote a partition, say (431), with accompanying Young
diagram. We’ll also use

(a;q) = (L —a)(1 —ag) - (1 —ag"™).
We'll also fix ¢ < 1.
To introduce the g-deformation Whittaker functions, we’ll start by defining:

3.2. MacDonald polynomials. These will lie in Q(g,t)[z1,...,2,]. They’ll de-
pend upon a partition, whose length is the number of variables. For each A, there
exists Py such that (Py, P,) =0 for X\ # p. We get Px(x,q,t). Specializations:

e g =0 ~» Hall-Littlewood.
e t =0 ~» g-Whittaker.
e Applying both, we obtain Schur polynomials.

Example 14. The ¢-Whittaker polynomial associated to A = (21) is
(af +23) + (1 +q + qt) (2722 + 2123).
If you just take ¢ = 1 naively, you get (...).)

g-Whittaker U, . (A,), where A, is a Gelfand-Tsetlin pattern A, 1 > A, 2 >
-+ Ap,n with interlaced rows below that. This comes out to

patterns

4. VALENTIN BLOMER, Hecke fields - Galois theory meets shifted convolution
problems

Let f(z) =), ane(nz) be a cusp form, Q(f) := Q({a, | n € N}).
Let x be a Dirichlet character, Q(x) := Q({x(n) | n € N}).
Shimura (1977): there exists Q74 € C* such that

G(X)L(3, f x x)
Qy,

Here we think of f as being fixed and x as varying. Moreover, we have the following
reciprocity: for a Galois automorphism o,

oLM8(3, f x x) = L(3, f7 x X7).

L83, f xx) = €Q(f, x)-

sgn(x)

We recall that .
Zy = pp x (1+pZ,) =7y
If we take a character x of prime power conductor p”, then p"~! divides the order

of x. We're interested in the set of characters y such that the conductor is p” and
the order is p"—1:

Epp = {X : conductor = p", order = phil} .
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In the terminology of Ravi’s talk yesterday, these are “wild characters”. We’'ll see
later that this is a Galois orbit. The values of such a character y are p"~!'th roots
of unity, and most of these values are primitive. In particular,

image(x) = piph-1.

h=1 root of unity if and only if z = z¢ + z1p +

More precisely, x(x) is a primitive p
x9p? + -+, where p{ oz;.

After this interlude on characters, we come to the thing we really want to discuss.
The number L8(%, f x x) lies in the field Q(f,x), and you might ask, is it a
generator of the ﬁeld7 When is this the case?

The work of Luo-Ramakrishnan (1977) and later work of Sun (2019) established
the following. Fix a prime p and a cusp form f. We make the assumption that
f has no inner twist, meaning that f is not equal to f ® xp for a real character
xp- (If the level is squarefree, then this can never happen.) Then they proved
that Q(f,x) = Q(L&(%, f x x), pp) holds for all x € Z,, provided that h > hy.
That’s quite remarkable - a central character is able to generate fields when you
run through character.

We want to do the same with more complicated expressions involving this central
value (see [I]):

Theorem 15 (Blomer-Burungale-Michel-Min). Under the same assumptions, Q(f, x) =

Q(‘L(%,f X X) 2 ) for all x € 2, 5, with h > hg.

We note that the containment “2” is obvious; the hard part is to show “C”.
As announced in the abstract, there is an analytic part and a Galois-theoretic
part.

4.1. Galois theory. We have Q(x) C Q(up,*) and Q(f) € Q(x,*). The real
reason we picked this topic is that we can now draw complicated field diagrams.

The top field is Q(f, x), which contains Q(y, *). This contains Q(x) (branching
down and to the left) and also Q(u,,*) (branching down and to the right), which
both contain the common subfield Q(x) NQ(gy, *), which in turn contains Q. There
is a further extension, with dotted lines: Q(f, x) contains Q(f) which contains Q.
Furthermore, Q(f) is contained in its Galois extension E, which is contained in
(branching up and to the right) E(x), which contains (down and to the right)
Q(f, %), and then there’s the common subfield E N Q(x, *) of E and Q(f, *):

We set £, :=|L*8(1, f x x)[%. By some diagram chasing, we have

0 # tracegf,v) /o (X (2)lf,y) = traceq(u, « /@ (£5,x traceq(f.x) /Q (. X(2)) -



We deduce that, unless the extension is trivial, we obtain

deg traceq(y,«)/Q(u,,+) X(¥) = 0.
Let o be a Galois automorphism of E(x)/Q(f,*). Then

Cix = 0(lrx) = Lp2xx

which implies that f = f?, so that the extension is trivial. We then consider

traceq(f,, f2,x)/Qf1.f2) X(#) 11 )
The upshot is that we need to evaluate

> LG XXO)F(5,9 x x)X (x)- (2)
oceGal(F(x))/Fo
We’re not summing over all characters, but only over a Galois orbit, so there is
only some orthogonality:

]ong(n) = 5711’*151 (mod ph)-

4.2. Shifted convolution sums. The standard way to evaluate such a sum of L-
values is via the approximate functional equation. This leads morally to something
like

> Ap(m)Ap(n), 3)

mn<gq?
am=zn (mod q)
where z is fixed, ¢ = p" and a?~! =1 (mod q). The subtlety here is that « is not
fixed — there are only so many such roots of unity, but they’re spread out all over
the place. Most results concerning the shifted convolution problem apply when the
coeflicients playing the role of o and = in are essentially fixed.
Let’s start with the case a = 1. Take n < N, m < M.

(i) If N < ¢*?7¢, then one can apply spectral methods: d-symbol, Voronoi

summation, large sieve. Indeed, this works as long as the longer variable is
no more than three times as long as the shorter variable.

(ii) If N > ¢®/?*¢ then we apply Voronoi in n, which leads to qﬂz Dot 2on=qz/n Mm)A(n)S(m, n, q),
which we can treat using the Weil bound for Kloosterman sums.

(iii) There remains the intermediary range. One can hope to treat this by upgrad-
ing the treatment of the N > ¢3/2¢ range, using that ¢ = p" is factorable,
via Weyl differencing.

For a # 1 large, the treatment of case breaks down completely. Without a
better idea how to proceed, we take absolute values:

Z [Ar(n)Ar(m)], A:={am=zn (modq)}.

(m,n)eA

We observe that A is a “roundish” lattice, and we’re summing nonnegative multi-
plicative functions over it. Sieve theory tells us that we understand this, and the
answer doesn’t depend upon the shape of the lattice. Recall that (by approxima-
tions to Sato-Tate) the magnitudes |Af(n)| are a bit smaller than 1 on average.
This saves (logq)~° for some § ~ 0.1.

This suffices for an asymptotic evaluation of the moment . (We were worried
that we already had to do a dyadic subdivision, so saving the fractional log would



be swamped by the logarithmically many scales, but it turns out that the main
term is of size ¢log g, so it really suffices.)

So, what is the upshot, or the moral to be learned? There’s somehow an interest-
ing passage from generation of Hecke fields to moments — by a bit of Galois theory,
we can relate such a generation question to moments of L-functions, at which point
we can apply analytic theory. It results in situations where we’re summing over a
Galois orbit, which changes the shifted convolution structure drastically.

5. Zv1 SHEM-Tov, Equidistribution of lifts on hyperbolic 4-manifolds

(Joint with de Faveri)

Take M = T\H", where I' = G(Z) and G = G(R) = SO(1,n).

Take a sequence ¢; of joint eigenfunctions of the hyperbolic Laplacian A and
the family of Hecke operators 7. So that this sequence is nontrivial, we require
that |A\;| = oco. We also normalize so that ||¢;|ls = 1. We define the probability
measures

pi = |¢;]* dvol.
Question 16. What are the weak-* limits of such p;?

Conjecture 17 (Rudnick—Sarnak, “QUE”, 1995). The only such limit is the uni-
form measure p = dvol.

What is known so far? (We focus on this specific setup, ignoring many others.)

e When n = 2, Lindenstrauss (2005) proved for congruence surfaces that
u = cvol for some scalar c. When the surface is compact, we must have
¢ = 1. Soundarajan showed in general (e.g., for for SLy(Z)) that ¢ = 1
(“non-escape of mass”).

e When n = 3, Shem-Tov—Silberman (2023) showed the analogous result for
I\H?, or more generally, I'\ (H?)" x (H3)*. Non-escape of mass was shown
in the master’s thesis of Zaman.

e When n = 4, we don’t quite have QUE, but we do have some partial
results. Shem-Tov—Silberman showed roughly that any such p is a countable
combination of measures, each of which is either the uniform measure dvol
or the uniform measure on totally geodesic submanifolds of dimension 3.
In this case, we also know non-escape of mass (de Faveri-Shem-Tov).

In the following work in progress, we can prove QUE in dimension 4 for a con-
crete, nontrivial example of such a sequence.

Theorem 18 (de Faveri-Shem-Tov). QUE holds for Pitale lifts. In fact, all we need
to know is that the Hecke eigenvalues are large. The result applies, for instance, to
I =SUy(Z).

Step 1 is the microlocal lift. Namely, we can lift the measure p to a measure i

on the phase space I'\G in a way such that this lift satisfies two conditions:

e [i is A-invariant.

e /i is a limit of Hecke eigenfunctions.
We use a very general construction of Silberman—Venkatesh (although such con-
structions have a long history). That’s the first step — once we have this microlocal
lift, we can forget the original quotients and just speak of measures on these homo-
geneous spaces.



Step 2 is ergodic theory or measure-rigidity. Basically, what we do is to try to
classify these A-invariant measures, using entropy/recurrence conditions and results
of Einsiedler-Lindenstrauss. What we get out is that fi is a convex combination
of homogeneous measures (i.e., a measure on the orbit of a reasonable reasonable).
What we need to show is then that, for 7 : G — T'\G the natural projection, we
have fi(7w(L)) = 0 for certain submanifolds L C G. The most general result we
know how to prove in this context is the following

Theorem 19 (Shem-Tov-Silberman). Assume that for any subspace U C L with
irreducible Zariski closure U?, we have that

S:={seGQNR):sU? =U"}
is %-weakly small (to be defined below). Then fi(m(L)) = 0.

Weak smallness (defined by Marshall in the context of the sup norm problem).
Let H < G. Fix maximal split tori Ty < Tg. For n € X, (T¢), define

Inllc = max {p,wn).

Here )
PG =g Z dim(ga ).
a>0
We similarly define ||n||%; for n € X.(Tx). Using these norms, we define two notions

of smallness (where one should think a = 1):

o H is a-tempered if for all n € X, (Ty), we have that ||n]|5; < aln|l&.
o H is a-weakly small if, in addition, either dim Ty < dim T or maxyewy, ||wnllfy <

aflnll-
To give some geometric intuition, take n € X, (T¢) and p prime. We can then form
the corresponding Hecke operator 7 = 7(n, p). What’s important about this norm
is that |7(H) Nsupp(7)| < . wew  p?lwnla,
wn€X.(TH)

Back to non-concentration. What we really proved is that u(w(L)) = 0 if the
following condition is satisfied: each of the stabilizers S that we saw before is
contained in

for all € > 0 there exists a finite set J. € H such that for all ¢, we can find 7 € J.
so that

I7llz1 ) e
Ao

2
Idea (Marshall): take 7 = (ZPN P Tp) such that each 7, satisfies 1-weak small-

ness. That way, you hope to make the intersection small. But this is not a
basic Hecke operator — you can expand it as 7 = ZTE + Zp 2q TTq- We may

assume by some other reasons that A, ~ (supp Tp)l/ 2. For the off-diagonal, we
use weak smallness. For the diagonal terms, use temperedness. The problem is
that in our case (dimension 4), there are some very non-small groups that appear:
H ~ SO(1,3) C SO(1,4), which is far from being i-tempered; it is %—tempered?
But A\, > (supp Tp)l/ 2, The reason we find our theorem interesting is that we were
nevertheless able to construct new Hecke operators such that the argument still
works. This shows that the i-weakly small condition (used in a lot of other works)

is mot tight. This gives us hope for at least the following two things:
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e We constructed our Hecke operators using spectral methods, involving the
Satake isomorphism. We hoped that maybe a more conceptual, geometric
understanding of the Hecke operators and the geometry of the building will
improve this construction. So, maybe there exist better operators that can
be used to prove something for general sequences.

e Nontrivial upper bounds for ||.|« in this case, for I'\H*.

Both of these

6. MATTHEW YOUNG, Shifted convolution problem for Siegel modular forms

(joint work with Wing Hong (Joseph) Leung; extremely recent, decided to speak
on it just a week ago)

Let Hy denote the Siegel upper half-space, and G = Sp,(R) := {g € GL4(R) | gJg* = J}
the symplectic group, where J = ((1) BI ) The group G acts on Hy via fractional
linear transformations: vz = (Az + B)(Cz + D)~! for v = (4 B).

Let F be a Siegel modular form of weight k on I' = Sp,(Z). It admits a Fourier
expansion F(Z) =3 ,ca+ arp(M), where At = {M € A | M > 0}. We adopt the

normalization ap (M) = (det M)g_%dF(M).

Conjecture 20 (Resnikoff and Saldana, 1974). If 4det M is a fundamental dis-
criminant, then ap(M) < (det M)=.

Conjecture 21 (Borcherer). |a(M)|? = L(3,7 ® xq), where 7 lives on GSpy and
d = disc(M).

We'’ve been imprecise here — there’s an extra average over the class group. In
particular, Lindel6f does not imply Conjecture

Theorem 22 (Leung, Y. 2025+). let Q € A, Q # 0. For a “reasonable” class of
test function Wy (N > 1), we have

S ar(My)ar(My)Wy (M, Mp, Q) < N3,

My, MyeAT
M1+Q=DM>

where Wy is essentially supported on matrices of size N.

Note that the number of matrices is essentially of size N3. The trivial bound is
N3+te: this follows in particular from Conjecture although we only need that on
average.

The analogous problem for GLs is well-studied; other results are sparse. For
instance, there has been somewhat recent progress (last 10 or 15 years) in study-
ing, for a GL3 coefficient Ap and GLj coefficient Ay, sums like > Ap(n)As(n+1).
But we're stuck on, e.g., > ds(n)ds(n+ 1), which is a major bottleneck for under-
standing, e.g., the sixth moment of the zeta function. There’s a paper of Jaasaari—
Lester—Saha where, assuming GRH, they proved QUE for Siegel modular forms
of large weights £ — oco. Our method generalizes a method of DFI. The key was
to find a way to interpret their method in an automorphic way, and porting that
interpretation over to the land of Siegel modular forms.

Our first goal is to explain the J-method of DFI and indicate an automorphic
way to understand it. The slogan is that the DFI §-method is the same as the fact
that you can write the constant function as an incomplete Eisenstein series on GLs:
1 = E™¢ (which the speaker says he learned from [2]).
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So let’s “recall” the DFI -method. Let w : R — C, with w(0) = 0, say of
compact support. Take it to be even and normalized so that ), w(n) = 1. The
starting point of the §-method is the following simple fact: zero is divisible by every
integer, but nonzero integers have their divisors come in pairs, since each divisor
has a complementary divisor. So you can write

6(n=0) = (w(d) —w(f)).
d|n

Here d runs over all integers dividing n. It’s convenient to write this in terms of
the positive divisors, as
22 w (%))

d>1
We can further write the divisibility condition using the finite Fourier transform,

giving
22 Zed hn (%))

d|n h(d
d>1

Next, writing (h,c¢) = d and d = ck, we obtain

2ZZed hn) Z w(ck) —w(L)).

dn h(d) k>1
d>1

The sum over h is just the Ramanujan sum S(n,0,¢). One typically takes ¢ < @,
Q?=N.
Next, following [2], let g : (0,00) — C be smooth, with g(y) < y* as y — 0 and
g(y) < 1 as y = co. The incomplete Eisenstein series attached to g is

E(z,9)== > 9(S72).
Y€l \SL2(Z)

By Mellin inversion and reversing orders of summation and integration, we may

write the above as )

2mi
(2
Pick g(—s)¢*(2s)(H (s) — H(1 —s)), with ¢* the completed zeta function and some
mild conditions on H, e.g., that H(1) — H(0) # 0. Then the above becomes
1
211 (2)

g(—s)E(z,s)ds.

(H(s)— H(1—s))E*(z,s)ds.

This evaluates to the residue at s = 1 plus an integral over the line 1/2; but the
latter cancels out. Normalizing that residue to be 1, we obtain

E™¢(2) := E(z,9) = 1.
Now, d(n = 0) is the nth Fourier coefficient of 1 = E'™, which may thus be written

1

e (H(s) — H(1 — s)) (nth Fourier coefficient of E*(z, s)) ds,
™ (2)

where the parenthetical Fourier coefficient is a divisor function or sum of Ramanujan
sums.
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The basic application of DFT is to solve the shifted convolution problem on GLs.
There, you obtain, for g # 0,

Z/\f n)Af(n+ qQuw(Z) < Nite,

One uses DFI, Voronoi twice (converting Ramanujan sums into Kloosterman sums),
and then the Weil bound. Let’s explain how to do this same sort of thing, but using
this interpretation of the d-method in terms of Eisenstein series (an “automorphic
variant on DFI”). Let’s pick another test function ¢ : (0,00) — C, smooth, ¢ € Z,
Y(y) < y* asy — 0 and < 1 as y — oo. Form the Poincaré series

Py(z,9) = Y elqgR(72)(Sv2).

'YEFOC\F

1= (fP f) = //ylf elayitm) ="
dy

= 3 AW () / y exp(~2m(m + n)y)u(y) 2.

m-+q=n y

Then

Here we think of the integral as a weight function of length ~ N if ¢)(y) concentrates
on y < 1/N. Now

. dx d
I=(fP,E", f / /ylf RAGVOES
where, say,
) =3 ag(r,y,¥)e(ra),
reZ
k—1 k—1 o0 d
S Am)m T X / exp (=2n(m +1)0) 4 g1, 0) .
s,

Now g decays rapidly at zero, so one should think y > 1. The exponential has
rapid decay, so one should think y < 1. Thus, effectively, y < 1. Also, r,m,n < 1,
so we just need to bound the Fourier coefficients, and the bound is, for y < 1,

aQ(Tvy7w) < N%+E
There’s a standard calculation of the Poincaré series, which gives
o) 00 qz
» = 5 = S I8 (_ - 7) d
0alr0.0) =V =) + 3800 ) [ e(ora = i) do

Now, c?y(1 + 2?) < N implies ¢ < v/N, so we can truncate just like in DFI. The
z-integral is < v/N/c. One obtains

Z \/N|S(ra q, C)| < N%Jre'
c
CS\/N
Note that there’s no Voronoi or Bessel functions in this treatment — these are all
implicit in the automorphy.
That was GLy. Now we want to do the same for GSpy:
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(1) First, we should construct an identity 1 = E™°¢ which will be the ana-
logue of DFI (although perhaps one could work out an analogue of DFT for
matrices). This is harder, since F has 12 polar lines in C2.

(2) Next, we should compute (FPg, F) as a shifted convolution sum (unfolding

Py).

(3) Finally, we unfold the other way. For this, we need a bound on the Fourier
coefficients of the Poincaré series Py. We use Kitaoka’s bound (similar to
the Weil bound). The classical Weil bound |S(m,n, c)| < ¢*(m,n,c)'/?c'/?
involves this GCD factor, and the analogous factor in Kitaoka’s work is
more complicated.

7. KEVIN KWAN, On a hybrid twisted moment for GL(3) automorphic
L-functions and its applications

The zeta function is defined by ¢(s) = 307 n™* = [[ (1 —p~*)~! for s = o +it
with o > 1. It satisfies the functional equation

§(s) == H(s)¢(s) = £(1 = s),
where
H(s) = %s(s — 1)rt/20(s/2).
Motivated by the prime counting function approximation

Zlogp:x—z%)—i—small,

p<z P

one wants to know the distribution of zeros of the Riemann zeta function.
The basic zero counting function

N(T):=#{p=B+iv:C(p)=0,0< <1, 7| <T}
satisfies the asymptotic
N(T) ~ T 108 5 ~ Ay _ip g piry ave H ).
Hardy (1915) showed that
No(T) := #{p as above : f =1/2} — oc.
What methods did Hardy employ to detect zeros on o = 1/27
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e Sign changes. Hardy defined the function Z(t) := €*()¢(1/2 4 it), which

is real-valued for ¢ € R. He studied the mean value [, Z(t)dt of it over
some small-ish interval I. The problem with this is that the function
fluctuates wildly, so occasional large values swamp the typical behavior.
This is reflected in the fact that Hardy doesn’t show a good rate at which
No(T') tends to infinity. Later, Hardy—Littlewood refined this approach and
showed No(T) > T.

Argument changes. Levinson (1974) showed that No(T) > 1 N(T) using
a different approach. He started with an Ansatz. Restrict to the critical
line 0 = 1/2. Suppose, by the functional equation, that we can write the
Riemann ¢ function as

§(s) = 2Rf(s)

for a certain entire function f. To understand Levinson’s strategy, it’s good

to draw some pictures. . What
Levinson was trying to detect is, when is the argument of f(s) congru-
ent to /2 modulo 7, along the indented segment shown in the picture?
The game is detecting when this image curve (depicted in blue) intersect
the imaginary axis; that will give zeros on the 1/2-line. A naive lower
bound for zeros on the critical line is that

No(T) 2 —Acarg f(5), ()

with C as in the picture. If you rewrite f = HG, with an archimedean
(resp. non-archimedean) part H (resp. G), then you can bound the changing
argument in () from below by

1 1
;AC arg H(s) + ;A;;R arg G(s),
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using the boundary of the rectangle R indicated below.

One can then further bound the above below by N(T') — 2Ng(G) up
to some small error. But, a priori, for this strategy, there’s no guarantee
that this quantity is positive. That’s the gamble for Levinson. But at least
this strategy says how to approach a problem via the mean value of the
Riemann ¢ function, for example. To make the translation, we need to use
a gift from Denmark, Jensen’s inequality. To count the zeros, we use that,
with a as in the above picture,

1 11
_ < - = 2 ds.
(1/2 - ONR(G) < 5- /8R10g|G(s)|ds 27T2/6R10g|G(s)| ds

One then uses something by Littlewood, roughly a mean value theorem
for G. We don’t know how to compute the moment, but we can use log-
convexity to pull the log outside the moment, leading to

1 a+iT
< Elog/a |G(s)|? dt.

—iT

To do better, we need to use another gift from Denmark — mollifiers, originally
used by Bohr. A mollifier M only introduces more zeros, so

(3 —a)Ngr(G) < (5 — a)Nr(GM) < ---.

You would like to take M = (!, but this isn’t practical, so one instead takes
something like a truncation. What Levinson did was to take

M) =3 e O sz i (v =)

Assuming RH, there is an equivalent formulation due to Speiser in 1935 which says
that all the zeros of the derivative of ¢'(1 — s) are all to the left of the 1-line. Later
on, Levinson and Montgomery show something even more precise: if you have a zero
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p.. for ¢’ to the right of the critical line, then you get a zero of ¢ to the left of the crit-

ical line, with control over the distances: /
Levinson then takes f(s) = (£(s) + A\¢'(s))/2 and shows that, for some shifts o and
B,

/Tqu2+a+uxum+5—nm%fﬂﬁ:MTmm+5mw)

as T'— oo. Here £ is understood as an error term in the bilinear sense.
We want to do something like this more generally. We consider

D> x(x(k)Ma,g(h, ki),

a~Q x(q)
where 7 € Ay(PGL(3)) and

T ' ' ko it
Mo g(h, k;m) ::/0 L(1/2—|—a+zt,7rxx)L(1/2+ﬁ—zt,ﬁXX)(E) dt. (5)

Theorem 23 (Conrey, Kwan, Lin, Turnage-Butterbaugh). Suppose w € Ao(PGL(3)/Q)
such that either

e T~T, oor
®30|gr and 3, .,
Suppose 0 € [0,1/2) and

Q° < T < Q55 (6)
with Q@ — oo. Let (A\) be complex numbers such that
(a) Ap <R and 3-, < pgye lAh,‘bzm < (TQ)E form =1,2.
Then
M. p(h, k;T) = (expected MT < TQ?) + &, 5(h, k),
where o
ARA
> T s k) < (TQ) O
h,k<(TQ)? Tk

Theorem 24 (CKLT-B and Farmer). For w’s as above and € > 0 sufficiently
small, there are > (11.4 — O(e)) percentage of zeros with |y| < Q¢ for the family
{L(s,mxx): x(q@)*, ¢ ~ Q} that are on the critical line.

We emphasize that our results are unconditional for 7 = 7, independent of GRC.
It’s also fully unconditional for GL(2) Maass forms. We note that there’s no hope
to asymptotically evaluate when T is too small and @ is large. This motivates
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the assumption @ We can’t take T' too large, because then we would encounter
difficult shifted convolution sums. So the moral of the story is that this result is
strong in the Q-aspect, while we only get “something” in the T-aspect (e.g., nothing
beyond Q'/3).

The idea of the proof is to use approximate functional equation and orthogonality.
This gives

Mk ~T Y oo Y ArmAem),

cd~Q mn<(TQ)?
mh=nk(d)
mhrnk

Suppose for instance that T~ Q¢ and 0 < 1/2 — O(e). We truncate and re-expand
according to whether ¢ > C or not, where C' ~ Q°. We get

Mocx 3 oS vpw [ 3 AR

>C d t=T 3/2
d<C<Q/C P(d) mn(TQ/C)

We then switch and re-expand and use arithmetic: writing mh = nk + dl, we see
that for mh # nk, we have ¢ < mh;"k < é(TQ)S/”G. So the whole point of
this hyperbola trick is that the length is now much shorter, by a factor of ). This
enables divisor switching. Because we’re doing the aspect where () — oo, we can
drop the condition mh # nk. After dropping this condition, we can reexpand (mod
£) as above. This leads to a problem in multiplicative number theory. The game
is, how do you use the hybrid large sieve for the rest of the sums, making sure that
the argument is independent of GRC. Previous relevant work was done by Conrey—
Iwaniec-Sound. They used the bound 73(n) < n® all the time. For a cuspidal
automorphic representation, we only have the much weaker bound A\, (n) < n®/**e.
So one needs to overcome that crutch.
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