
1. Gebhard Boeckle’s lectures

Galois representations and congruences.
We first discuss profinite groups. Let G be a topological group.

Theorem 1.1. The following are equivalent:

(a) G is compact, Hausdorff, and totally disconnected.
(b) G is compact, and admits a neighborhood basis of the identity by open normal

subgroups.
(c) There is a directed poset I and an inverse system (Gi) of finite (discrete) groups

such that G = lim←−I Gi.

We say that G is profinite if the above conditions hold. The topology on lim←−Gi
is that obtained by regarding it as a closed subgroup of the product

∏
Gi.

Constructions:

(a) If G is discrete, then we equip it with the profinite topology Gpf := lim←−G/N ,
where N runs over the finite index subgroups.

(b) If G = lim←−Gi is profinite, then
(i) The abelianization is given by

Gab = G/[G,G] = lim←−G
ab
i ,

and in particular, is profinite.
(ii) For H finite, write Hp for its maximal p-group quotient. Then

Gp = lim←−(Gi)p
is a pro-p-group (and in particular, profinite).

(iii) If N ≤ G is closed and normal, then G/N is profinite.

Example 1.2. (a) Let F be a field. Set GF := AutF (F
sep) = Gal(F sep/F ) profi-

nite. Define the poset

IF := {L ⊆ F sep : L ⊇ F finite Galois,⊆} .

Then

GF
∼=−→ lim←−

L∈IF

Gal(L/F ).

(b) Let F ′ ⊆ F sep be a normal extension of F . Then GF ′ ≤ GF is closed and
normal. We may thus write

Gal(F ′/F ) ∼= GF /GF ′ = lim
L∈IF ,
L⊆F ′

Gal(L/F ).

(c) Let N denote the natural numbers, ordered by divisibility. Then

Ẑ = lim←−Z/n =
∏
p

Zp,

where the last step is the Chinese remainder theorem. We sometimes need a
slight modification:

Ẑ(p) = lim←−
p∤n

Z/n =
∏

ℓ prime,ℓ̸=p

Zℓ.

Let’s fix some notation:
1
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(a) Let K be a number field, OK its ring of integers. Let PlK = Pl∞K ⊔ PlfinK
denote the set of places v of K. Let v be a finite place. We may then
attach to it a maximal ideal qv of OK , giving a bijection

PlfinK ↔ Max(OK).

We may form the residue field kv := OK/qv. We denote qv for the car-
dinality of kv. We write char(v) for the characteristic of kv. We denote
by Ov = lim←−O/q

n
v , with fraction field Kv. Also, we have a short exact

sequence

1→ Iv → Gv := GalKv → Galkv → 1.

A topological generator for Galkv is given by

Frv : α 7→ αqv .

We denote by Frobv ∈ Gv some lift of Frv.
We write S∞ := Pl∞K for the set of archimedean places, so that K ⊗Q R ∼=∏
v∈S∞

Kv. For a rational prime p, we write Sp for the set of places v of

K such that v | p.
(b) We also need some local analogues for E ⊇ Qp a p-adic field. Let O = OE

denote the ring of integers, π = πE a uniformizer, and F = OE/π the
residue field, with q = #F. Then E ⊇ Qq = Qp[ζq−1] ⊇ Qp. We have
W (F) = Zq = Zp[ζq−1].

Contiuing the examples, which may serve as exercises:
(d) Let ζt be a primitive tth root of 1. For k a finite field, we have Gk ∼= Ẑ = ⟨Frk⟩,

where Frk : α 7→ α|k|.
(e) Let E ⊇ Qp (finite extension). Then GE (Jannsen–Wingberg for p ≥ 2). Local

class field theory: the Artin map E× → Gab
E is a continuous inclusion with

dense image. Writing E× = πZ
E × O

×
E = πZ

E × F× × U1
E . Since the units are

known to be a finitely generated Zp-module, we get as a corollary that

Homcts(GE ,Fp) = H1
cts(GE ,Fp)

is finite.
(f) We turn to the case of a number field K. We fix an embedding Ksep ⊆ Ksep

v

for each place v, which gives an embedding of Galois groups Gv → GK . For
S ⊆ PlK finite, we write

KS := {α ∈ Ksep : K(α) is unramified outside S} ,

which is a normal (typically infinite) extension of K. We write

GK,S := Gal(KS/K) = GK/GKS

for its Galois group. We remark that if we take v /∈ S, then since v does not
ramify in KS , we know that the map Gv → GK,S factors via the quotient
Gv/Iv ∼= Gkv , so that Frobv ∈ GK,S is independent of the choice of lift. On
the other hand, if v ∈ S, then we might ask whether the map Gv ↪→ GK,S (see
the work of Cheniever–Clozel). The structure of GK,S is unknown, but global
class field theory describes Gab

K,S . A corollary is that

H1
cts(GK,S ,Fp) = Homcts(GK,S ,Fp)

is finite whenever S is finite. (One can appeal to Hermite–Minkowski, or class
field theory.)



3

(g) Consider the tame quotient of GE , for E ⊇ Qp. Given E ⊇ Qp, we form the
tower of extensions Etame/Eunr/E, where

Eunr = ∪{E(ζn) : p ∤ n} ,

Etame = ∪{Eunr( n
√
πE) : p ∤ n} .

It’s a fact that Gtame
E may be expressed as the profinite completion of ⟨st :

sts−1 = tq⟩.

We finally come to Galois representations. They will typically be called
ρ : G → GLn(A), where G is a topological group, A is a topological ring, and ρ is
a continuous map. The topology on GLn(A) is the subspace topology coming from
embedding insideMn(A)×A via g 7→ (g,det(g)−1), for instance. We call ρ a Galois
representation if G = GF for some field F . The main examples of interest for A
will be C, finite fields, and p-adic fields, to interpolate CNLO (complete Noetherian
local O-algebras).

Exercise 1.1. Let G be profinite, and ρ as above.

(a) If A = C, then ρ(G) is finite.
(b) If A = Op, then there is a finite extension E ⊇ Qp such that ρ(G) ⊆ GLn(E)

up to conjugation.
(c) If A = E ⊇ Qp (finite extension), then after conjugation, we can assume that

ρ(G) ⊆ GLn(O).

In case (c), we have a G-stable lattice Λ ∼= On ⊆ En. We can apply reduction
O → F. This gives a reduction

ρΛ : G→ GLn(F).

Let’s use the notation cpα for the characteristic polynomial of α ∈Mn(A).

Theorem 1.3. (a) Given a representation r : G → GLn(F). Then there exists a
semisimple representation rss : G → GLn(F) such that cpr = cprss (Brauer–
Nesbitt), where rss is unique up to isomorphism.

(b) We have cpρ ∈ O[X] and cpρ̄Λ ∈ F[X], independent of Λ.

Theorem 1.4. For ρ, ρ′ : GK,S → GLn(E) semisimple, we have that ρ ∼ ρ′

(conjugate) if and only if for all v ∈ PlfinK \ S, we have

cpρ(Frobv) = cpρ′(Frobv).

Example 1.5. (1) p-adic cyclotomic character χcyc
p : GQ → Z×

p . We have

GQ ⟳ µpn = ⟨ζpn⟩ ∼= Z/pn,

(Z/pn)× = AutZ(Z/pn). Facts:
• χcyc

p |GK
: unramified outside Sp ∪ S∞.

• χcyc
p (Frobv) = qv ∈ Z×

p .

(2) The Tate module of an elliptic curve E/K . We again have GK ⟳ E [pn](K̄) ∼=
(Z/pn)⊕2, which gives rise to GK → GL2(Z/pn). In the limit, we get

ρE,p : GK → GL2(Zp) ↪→ GL2(Qp).

Facts:
• ρE,p is unramified outside S∞ ∪ Sp ∪ Bad.
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• For v outside those places, we have

cpρE,p
(Frobv) = X2 − av(E)X + qv,

where

av := #E(kv).
This shows the geometric meaning of Frobenius.

(3) Let f = q +
∑
n≥2 anq

n be the q-expansion of a cuspidal Hecke eigenform

f ∈ Sk(N, ε), k ≥ 1, ε : (Z/N)× → C×.

Theorem 1.6. (a) Ef = Q(an : n ≥ 1) is a number field, with an ∈ OEf

for all n.
(b) (Eichler–Shimura, Deligne, Deligne–Serre) For all finite places λ of Ef

(with Eλ the completion of λ and p the characteristic of kλ) there exists
an absolutely irreducible representation

ρf,λ : GQ,N∪{p,∞} → GL2(Ēλ)

and for all primes ℓ ∤ Np, we have the relation that we just saw in
Chris’s talk:

cpρf,λ(Frobℓ) = X2 − aℓX + ε(ℓ)ℓk−1.

This characterizes the representation and maybe gives the main link to
Galois representation.

Now, we want to study congruences. To do this, we first go from

• cusp forms that start life over the complex numbers on the upper half plane,
to
• Fourier coefficients, that live over the integers.

(For simplicity, assume that nebentypus is trivial: ε = 1.) Let Sk(N,Z) denote the
set of all f =

∑
n≥1 anq

n such that an ∈ Z for all n.

Fact 1.7. Sk(N,Z) is a Z-module of rank equal to dimC Sk(N).

For any ring A, we have

SA = Sk(N,Z)⊗Z A ⟲ TA = T(N,A).

Definition 1.8. For Hecke eigenforms f =
∑
anq

n and g = bnq
n ∈ Sk(N, Z̄p), we

say that f ≡ g (mod p) if the following equivalent conditions hold:

• for all primes ℓ ∤ Np, we have aℓ ≡ bℓ (mod mZp
).

• ρf ≡ ρg (mod mZ̄p) as maps GQ → GL2(F̄p).

We pass to the same Hecke algebra. Let T′
A denote the subalgebra of TA gener-

ated by Tℓ for all ℓ ∤ N . This is acted on by SA.

Fact 1.9. We have bijections between the following:

• T′-Hecke eigensystems of forms in Sk(N).
• HomC(T′

C,C).
• HomO(T′

O,O), where we choose E large enough with C ⊇ Q̄ ⊆ Q̄p ⊇ E ⊇
O, where O always denotes the ring of integers of E.

We also have a bijection between

• HomO(TO,F), and
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• The set of ρ̄ : GQ → GL2(F) that are semisimple reductions from some ρf ,
with f ∈ Sk(N).

T′ is a finite free O-algebra. For any ρ̄, we get a maximal ideal mρ̄ ⊆ T′
O. For a

given ρ̄, if we take
(T′

O)mρ̄ ,

then this is the relevant Hecke algebra for understanding the forms congruent to ρ̄.

Theorem 1.10 (Carayol, Serre). Assume that ρ̄ is absolutely irreducible. Then
there exists a continuous representation

ρmod
ρ̄ : GQ,N∪{p,∞} → GL2

(
(T′

0)mρ̄

)
(1.1)

“built” from the ρf , for f ∈ Sk(N, Z̄p), with ρf ≡ ρ̄ modulo mZ̄p
.

(One can write down a characteristic polynomial, similar to the above.) Maybe
one should also say that

(T′
O)mρ̄

⊆
∏

f,ρf≡ρ̄

O, (1.2)

where the left hand side is generated by all the

{trace ρf (Frobℓ) : ρf ≡ ρ̄, ℓ ∤ Np} .
Now, is the inclusion (1.2) strict? If you take twice the same form, then you get
twice the same value.

Vision of Mazur? Can ρmod
ρ̄ be characterized purely in terms of “Galois”

theory, maybe at least once ρ̄ is given? You need to start somewhere. Start with
the mod p representation. Then there’s a sort of p-adic representation (1.1) that
you get here, which sees all forms congruent to ρ̄. Can you see this sort of thing from
a purely Galois-theoretic perspective? This might have been the starting point for
the study of deformations of Galois representations. Mazur maybe had one example
in mind: Hida had just written down his Hida families, which are much bigger than
things of fixed weight and level.

Let’s now turn to deformation functors. In many ways, what we’re doing now
at the beginning is very formal, and maybe in the next lecture it gets a bit more
Galois-theoretic. Let G be a profinite group – think of some global Galois group.
Let E ⊇ O → F be a local field, with uniformizer π and residue field cardinality q.
In what natural category do these O-algebras T′

O live?

Definition 1.11. CNLO is the category of complete noetherian O-algebras (A,mA)
with residue field F and with local homomorphisms.

Typical rings: O[[X1, . . . , XrK/I. Some structure theorem tells you that this is
all you can get. There is a finite subcategory

ArO ⊆ CNLO

consisting of Artin objects.

Question 1.12. For ρ̄ : G→ GLn(F), when is the functor

Dρ̄ : CNLO → Set

(A,mA) 7→ {ρA : G→ GLn(A) | ρ mod mA ≡ ρ̄} / ∼
representable by Rρ̄ ∈ CNLO?

To fill in some terminology:
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Definition 1.13. (a) For A ∈ CNLO, set

FA := HomCNLO (A, •) : CNLO → Set.

(b) Say that a functor F : CNLO → Set is
(i) representable if there exists A ∈ CNLO such that F ∼= FA, and
(ii) continuous if for all (A,mA) ∈ CNLO, the map F (A)→ limn F (A/m

n
A) is

an isomorphism.

Exercise 1.2. (a) The fiber product of the diagram ∆ given by

B

ψ

y
A

φ−−−−→ C

inside ArO is

{(a, b) ∈ A×B | φ(a) ≡ ψ(b)} .
(b) CNLO ”has no fiber products”.

Exercise 1.3. Suppose F = FA for A ∈ CNLO. Then

(a) F (F) = {∗}, and F is continuous.
(b) The Mayer–Vietoris property (MV) holds for F , i.e., for all diagrams ∆, the

induced map (∗)∆ is bijective, where

(∗)∆ : F (A×C B)→ F (A)×F (C) F (B),

where on the right hand side, we take the fiber product in Set.

Notation 1.14. • F[ε] := F[X]/(X2).
• Call φ : A↠ A′ in CNLO small if mA′ · (ker(φ)) = 0. (e.g., F[ε]→ F)
• For F : CNLO → Set, define the TF := F (F[ε]), the tangent space of F .

You can translate this back into rings. Here are some more exercises:

Exercise 1.4. If the functor F satisfies

• F (F) = {∗}, and
• (∗)TF

: F (F[ε]×F F[ε])→ TF × TF is bijective,

then TF is an F-vector space.

Example 1.15. For F = FA, we have

TF = HomCNLO (A,F[ε]) = HomF
(
mA/(m

2
A, π),F

)
=: TA.

Exercise 1.5. For φ : A → B in CNLO, the map φ is surjective if and only if
Tφ : TB → TA is injective.

Theorem 1.16 (Grothendieck). Suppose F : CNLO → Set is continuous, satisfies
F (F) = {∗}, the MV-property holds, and dimF TF <∞. Then F is representable.

Remark 1.17. For this last theorem, there are simplifications by Schlessinger,
Functors of Artin rings. Schlessinger realized that these axioms of Grothendieck
may be hard to verify in concrete situations, so he gave a simple (but somewhat
long) list of axioms to verify. See Mazur ’87, and Gouvêa’s survey.
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Let’s now turn to Galois deformations functors. We have our usual

ρ̄ : G→ GLn(F).

We can do something about the conjugation.

Γn(A) := ker (GLn(A)→ GLn(F)) .
We define the lifting and deformation functors

D□
ρ̄ , Dρ̄ : CNLO → Set,

(A,mA) 7→ {ρA : G→ GLn(A) | ρA ≡ ρ̄ mod mA}
(“lifting functor” or “framed deformation functor”), and where for Dρ̄, we take
things modulo Γn(A)-conjugacy (i.e., “deformations are lifts modulo conjugacy”).

Theorem 1.18. Suppose Φρ holds, i.e., #Hom(G,Fp) <∞. Then:

(a) Dρ̄ always has a “hull”.
(b) If EndG(ρ̄) = F, then Dρ̄ is representable (uses Schlessinger). This gives rise

to Rρ̄.

(c) (Always) D□
ρ̄ is representable (Kisin, Magid–Lubotzki). Gives rise to R□

ρ̄ .

Here (c) is an exercise you can do.

Example 1.19. Take n = 1. Le ρ̄ : G → GL1(F) = F×. Fact (Teichmüller lift):

there exists ρ̂ : G→ GL1(W (F)), a lift of ρ̄ such that ρ̂(G)
red−−→ ρ̄(G).

Exercise 1.6. Suppose that Homcts(G
ab,F) is finite. Then the universal defor-

mation ring Rρ̄ (which for n = 1 is the same as the universal lifting ring R□
ρ̄ ) is

isomorphic to

O[[(Gab)pK = lim←−O
[
(Gab)p

]
.

The universal lifting is

ρ̂⊗
(
G→ (Gab)p ↪→ O[[(Gab)pK×.

)
Special cases:

(i) G = GF , F ⊇ Qp finite extension, then by local class field theory,

(Gab)p ∼= µp∞(F )× Z1+[F :Qp].

(ii) G = GK,S , S ⊇ Sp finite, then global class field theory gives

(Gab)p ∼=
AK,S

finite p-group
× Zr2+δp ,

where r2 denotes the number of complex places and δ = δK,p is the Leopoldt
defect, which the Leopoldt conjecture says is zero.

We turn to cohomology. For ρ̄ : G→ GLn(F), define

adρ̄ =Mn×n(F)

with the “adjoint action”: for g ∈ A and α ∈Mn×n, we take

g · α := ρ̄(g) · α · ρ̄(g)−1.

(We remark that adρ̄ ∼= ρ̄⊗ ρ̄∨.)
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Proposition 1.20. (a) We have TD□
ρ
= D□

ρ̄ (F[ε])
∼=←− Z1(G, adρ̄), where the map

sends a cocycle c : G→ adρ̄ to

ρc : g 7→ (1 + εc(g))ρ̄(g).

(b) The above map induces an isomorphism H1(G, ad ρ̄)
∼=−→ TDρ̄ .

(c) We have dimB1(G, adρ̄) = h2−h0(G, adρ̄). (We use the notation hi := dimHi

and zi = dimZi.)

Corollary 1.21. For r = h1(G, adρ̄), r
□ = z1(G, adρ̄), we have surjections

O[[X1, . . . , XrK→ Rρ̄

and
O[[X1, . . . , Xr□K→ R□

ρ̄ ,

and r, r□ are optimal.

What’s the relevance of H2? Let φ : A1 → A be a small extension, and let
I := ker(φ).

Question 1.22. Is the map Dρ̄(A
′)→ Dρ̄(A) surjective?

Let ρA : G→ GLn(A) be as in the right hand side.

Fact 1.23. There exists a set-theoretic lift ρ′ : G→ GLn(A
′) of ρA (i.e., φ ◦ ρ′ =

ρA).

Definition 1.24. Set
cρ′ : G×G→ adρ̄⊗FI,

(g, h) 7→ (ρ′(g, h) · ρ′(h)−1 · ρ′(g)−1),

where this last quantity lies in 1 +Mn×n(I). We note that (adρ̄⊗FI) ∼= Mn×n(I).
To get back, subtract 1.

Proposition 1.25. (a) cρ′ ∈ Z2(G, adρ̄⊗I), Obs(ρA, φ) = [cρ′ ] ∈ H2(G, adρ̄⊗I)
is independent of ρ′!

(b) We have Obs(ρA, φ) = 0 if and only if there exists ρA′ ∈ Dρ̄(A
′) lifting ρ.

We give a proof of (b). If cρ′ = ∂2f for some f : G → adρ̄⊗I, then you can
check that if you take your ρ′ and multiply it on the left with 1 + f , we get an
element (1 + f)ρ′ : G→ GLn(A

′) that is a lift of ρA (to D□
ρ̄ (A

′)).
Mazur observed that you can do something with this obstruction theory: you

can prove something more about these projections on the top line here. But you
have a very coarse control over the kernel ideal I of the surjection.

Theorem 1.26. Consider R = O[[X1, . . . , XrK projecting via something called π
to Rρ̄ (r = h′(G, adρ̄ 1)), with kernel J . Then

R/mRJ → Rρ̄

is small with kernel J/mRJ , and

ob : Hom(J/mRJ,F) ∼= H2(G, adρ̄),

ψ 7→ (1⊗ ψ) obs
(
ρunivρ̄ , π

)
is injective!

Corollary 1.27. With r, r□ from above and s = h2(G, adρ̄) have presentations
Rρ̄ := O[[x1, . . . , xr□ ]]/(f1, . . . , fs).
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Definition 1.28 (ad hoc). The expected cohomological dimension is

ecd im(ρ̄) = z1(G, adρ̄)− h2(G, adρ̄) = h2 −
2∑
i=0

(−1)ihi(G, ad ρ̄).

Proposition 1.29. If

dimsR
□
ρ
/π ≤ ecdim(ρ̄), (1.3)

then R□
ρ̄ is 0-flat, of relative dimension ecdim(ρ̄) over O, and a complete intersec-

tion.

Example 1.30. (a) G = GF , where F ⊇ Qℓ is finite and ℓ ̸= p. Then (1.3) holds.
ecdim = 42.

(b) G = GF , F ⊇ Qp. Then (1.3) holds and each ecdim = n2(1 + [F : Qp]).
(c) If G = GK,S , then we have many examples for (1.3) if k is not totally real, k

is totaly odd, and ρ̄ is totally odd, and n ≥ 2. (Have to be careful. Use that
S ⊇ S∞ ∪ Spsup · · · )

(d) We have
dimKrullR

n
ρ̄/π ≤ ecdim(ρ̄)

for G = GK,S , with G and GK,S , if and only if δ = 0.

Remark 1.31. To avoid the reliance on δ = 0 (often) by fixing a lift µ : G→ O×.

Mazur’s vision: for v ∈ S, define “geometric” subfunctors D□
v ⊆ D□

ρ̄/GK,v
and

the pullback in (S = (ρ̄, S, (D0
v)v∈S)) to get a diagram involving, for G = Gk,S ,

D□
ρ̄ → ⊔v∈SD□

ρ̄|Gv

and
D□
S → ⊔v∈SD□

v .

Removing frames at right point, we get a

RI ↞ Rρ̄.

Question 1.32. Can we choose I in such a way that some natural map

Rρ → Tk(N, ε,O)mρ̄

is an isomorphism?

We turn now to local deformation problems. How to get a more geometric side
of deformation rings? Fix

ρ̄ : GK,S → GLn(F).
Write ρ̄v := ρ̄ |Gv

. Fix a character µ : GK,S → O× lifting det ρ̄. Our next aim is to
identify interesting special loci in

X□
ρ̄v := Spec(R□

ρ̄v ).

Definition 1.33 (Thorne, who gave a compact description). A local deformation

problem is a subfunctor Dv ⊆ D□,µv
ρ̄v (possibly with fixed determinant, i.e., det(ρ) =

µ – that’s what the superscripted µv means) such that

(1) Dv
∼= FRv for a quotient Rv of R□,µ

ρ̄v .
(2) For all A ∈ CNLO and g ∈ Γn(A),

ρ ∈ Dv(A) =⇒ gρg−1 ∈ Dv(A).
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Remark 1.34. Γn(Rρ̄□v ) acts by conjugation on D□
ρ̄v (R

□
ρ̄v ), and hence (by univer-

sality of R□
ρ̄v ), it acts on R

□
ρ̄v .

Proposition 1.35 (BLGHT, Potential Automorphy 2, Lemma 3.2). Let Rv be a

quotient R□,µ
ρ̄v

αv−−→ Rv such that

(a) ker(αv) is invariant under Γn(R
□
ρ̄v ), and

(b) Rv is reduced and not isomorphic to F.
Then FRv ⊆ D□

ρ̄v is a local deformation problem.

Construction of the R′
vs? (Kisin): Let Xv ⊆ X□

ρ̄v (Q̄p) be Γn(Q̄p)-invariant.
Each x ∈ X□

ρ̄v (Q̄p) gives a map

ρx : Gv → GLn(Q̄p),
and also

αx : R□
ρ̄v → Q̄p.

Then
J := ∩x∈Xv

ker(αx)

is Γn(R
□
ρ̄v )-invariant. (Need to check whether condition (b) above holds to get the

local deformation problem, but at least there is a good starting point for something.)
You can define some

RXv := R□
ρ̄v/I.

Then SpecRXv “is” the schematic closure of Xv in X□
ρ̄v .

For a classification of the ρ : Gv → GL(V ) with V ≃ Q̄np , with v ̸= ∞ and ℓ =
char(v) ̸= p, use the Grothendieck monodromy theorem. Choose a surjection

tp : Iv → Itame
v ≃ Ẑ(ℓ) surj−−→ Zp.

(a) There is a unique N = Nρ ∈ EndQ̄p
(V ) and an open subgroup I ⊆ Iv so that

ρ |I= exp (tp(•)N) |I .
(b) For N from (a),

r = rρ : Iv → GL(V ),

g 7→ ρ(g) exp(−tp(•)N)

is a continuous representation with finite image. Call

τ = (r,N) = WD(ρ)

the (inertial) Galois type of ρ.

Let

Xτ :=
{
x ∈ X□

ρ̄v (Q̄p) |WD(ρ) ≃ τ
}
.

Note that

#
{
τ | τ arises from X□

ρ̄v (Q̄p)
}
/∼=

<∞.

Define
R□,τ
ρ̄v := RXτ

↞ R□
ρ̄v .

Theorem 1.36 (Sholton, Proposition 3.6). (a) R□,τ
ρ̄v defines a local deformation

problem at v.

(b) Spec(R□,τ
ρ̄v ) is a union of irreducible components of X□

ρ̄v , and equidimensional

(n2).
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(c) R□,τ
ρ̄v [ 1p ] is reduced, contains a dense set of (generic) smooth points.

Warning (depending upon how much you are interested in singularities of

schemes, or not): R□
ρ̄v is a complete intersection, but the components R□,τ

ρ̄v can ap-
parently have much worse singularieties – they need not even be Cohen–Macaulay.

Let’s say a bit about the case v | p, where things get a bit vaguer. Now take
Kv ⊇ Qp finite, and consider the set of all representations{

ρ : Gv → GLn(Q̄p)
}
. (1.4)

By p-adic Hodge theory, this contains the following set of representations that are
“geometric” in some sense:{

ρ : Gv → GLn(Q̄p) | ρ is potentially semistable
}
. (1.5)

Fontaine attaches invariants to these ρ’s. One thing he attaches is a Galois type

WD(ρ) = (rρ, Nρ),

although in a very different way than before: in this case, where Kv is a p-adic field,
the pro-p-part of the inertia is not this harmless Zp, but is instead a huge group
that can be complicated, so one really needs to use p-adic Hodge theory to get
something here. Here, as before, Nρ is a nilpotent operator and rρ : Iv → GLn(Q̄p)
is a finite-dimensional representation. Fontaine also attaches a set of Hodge–Tate
weights

ν = HT(ρ) = {HTι}ι:Kv→Q̄p
.

We attach some

Xτ,ν =
{
ρ : Gv → GLn(Q̄p) potentially semistable |WD(ρ) ≃ τ, HT(ρ) = ν

}
.

Kisin then attaches potentially semistable deformation rings R□,τ,ν
ρ̄v .

Remark 1.37. If n = 2 and K = Q, and if you somehow have HT-weights ν =
(k = 1, 0), k “small”, (k ≥ 2), τ = (triv, 0) (giving rise to ρ crystalline), then

R□,ν,τ
ρ̄p ≃ O[[X1, . . . , X5]].

(Alternative: use ordinary deformation rings.)

Global deformation rings. Fix f ∈ Sk(N, ε,F), take E sufficiently large. We
get

ρ̄ : GQ,Np∞ → GL2(F).
We found

mρ̄ ≤ To ⇝ ρmod
ρ̄ : GQ,Np∞ → GL2

(
(TO)mp

)
.

Now, for the ramified primes ℓ | Np, local Langlands gives a list Tℓ of Galois types
that arise from (forms parametrized by) (T′

O)mρ̄
. At p, you also get HT-weights

(k − 1, 0) (papers of Faltings and of Saito). From this dta, you now get a local
deformation problem

Dℓ = D□,Tℓ
ρ̄ℓ ⊆ D□

ρ̄ℓ
and D

□,Tp,ν
ρ̄p .

You form the pullback functor for a list

S = (ρ̄, N, S, (Dℓ)ℓ|Np),
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where S is the divisor of Np∞. (Let’s suppose p > 2.) Get a restriction from global
to local:

D□,µ
ρ̄

res−−→
∏
ℓ|Np

D□,µ
ρ̄ℓ .

D□,µ
ρ̄

res−−−−→
∏
ℓ|NpD

□,µ
ρ̄ℓx x

DS −−−−→
∏
ℓ|NpDℓ

which gives rise to RS as a quotient of R□,µ
ρ̄ , with

ρunivS : GQ,Np∞ → GL2(RS).

Universality of RS (using local Langlands and p-adic Hodge theory) gives a surjec-
tion

α : RS → (TO)mρ̄
, (1.6)

assuming that ρ̄ is absolutely irreducible.

Conjecture 1.38. α is an isomorphism under suitable hypothesis.

The hope is that one can find a Galois-theoretic representation that completely
describes this thing coming from automorphic representations. This was all first put
into some definite form by Wiles and Taylor–Wiles in their proof of Fermat’s last
theorem. Their work gave the first great supply of such isomorphisms. Then there
was Breuil–Conrad–Diamond–Taylor, proving Taniyama–Shimura–Weil conjecture.
Then there was Clozel–Harris–Taylor, and Khare–Winterberger proving the Serre
conjecture. One thing about why this thing could be important, and why it was
important in many of these cases. What helps you sometimes is that being modular
is “contagious”. What is often relatively easy, maybe if the representation (a p-adic
Galois representation) comes from the ring on the left hand side of (1.6), and now
if you have the full isomorphism (1.6), then you know it also comes form the right
hand side. But in practice, this isomoprhism doesn’t tell you modularity of one
just form in the class giving rise to the right hand side, but all of them. That’s all.

2. Chris Skinner’s lectures

Integral representations, Euler systems, and multiplicity one.
My choice of these topics is motivated by my interest in special values of L-

functions, and in particular problems like the BSD conjecture. We’ll focus on some
representation theory, that plays a role in both the analytic and the algebraic sides
of these problems. You can possibly view this as a bridge between the talks at the
start and at the end of the week.

Let’s start by talking about integral representations. It’s helpful to think

L-function =

∫
symmetric space X

(automorphic form),

where perhaps the automorphic form starts on some larger symmetric space Y ⊇ X.
This is useful because it’s our main tool for studying L-functions.

The next part of my title is Euler systems. This is going to seem like something
different. What are Euler systems? One starts off with a continuous action

Gk = Gal(k̄/k) ⟳ V,
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where V is a Qp-space of finite dimension (with Qp acting linearly and contin-
uously). At least conjecturally, there’s a fairly general framework for producing
such V from automorphic forms or representations. This Galois representation
captures something about the automorphic form that can be expressed in terms of
the L-function. All of these things are thus related to one another, even if they
are frequently encountered separately. Here V often stabilizes in a Zp-submodule
(lattice), which might yield a good exercise for later. An Euler system is a collec-
tion of classes in Galois cohomology cF ∈ H1(F, T ), where F/k are certain abelian
extensions of k satisfying certain compatibilities: for F ′ ⊇ F ,

coresF ′/F (cF ′) =?cF ,

where ? often seems the local Euler factors of V (or some L-function attached to
V , depending upon the setting).

Both of these settings have been useful for exploring special values of L-functions
(Kolyvagin, Gross–Zagier, ...). What we’ll focus on in these lectures is the role
that multiplicity one plays in seeing these L-functions and in producing these Euler
systems. We’ll see that they essentially play the same role, which is further evidence
for what people say, to the effect that Euler systems are some sort of algebraic
incarnation of L-functions.

What do we mean by “multiplicity one”? One frequently encounters this term
in the theory of automorphic forms, in various guises:

(1) Uniqueness of a representation in some space of functions, e.g.:
(a) A cuspidal automorphic representation of GL2 shows up with multi-

plicity one L2(GL2(k)\GL2(Ak)).
(b) Uniqueness of (local) Whittaker models for GL2.

(2) Uniqueness of some (invariant) linear functional: for H ≤ G and π a rep-
resentation of G,

dimHomH(π,C) ≤ 1.

Or, for σ a representation of H, as the assertion that dimHomH(π, σ) ≤ 1.

The first examples can be understood in terms of the latter. The latter will be a
useful framework for us.

Let’s now turn to integral representations and give some examples. The first
integral representation we see is that of the Riemann zeta function. Let

ψ(t) =

∞∑
n=1

e−πn
2t. (2.1)

Then for ℜs sufficiently large,∫ ∞

0

ψ(t)t
1
2 s−1 dt = π−s/2Γ( s2 )ζ(s). (2.2)

We see this by bringing the summation outside the integral. This gives a Mellin
transform.

What’s the automorphic side of this? If we look at, for τ = x+ iy,

θ(τ) =
∑
n∈Z

e−2πin2τ .

This is an automorphic form, and we have

( 12 (θ(iy)− 1)) = ψ(2y),
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so (2.2) is an integral representation for the Riemann zeta function coming from
the symmetric space for a torus embedded inside GL2. One has similar integral
representations for the Dirichlet L-functions. (No multiplicity one that we can see
thus far.)

This gets souped up in the work of Hecke and Iwasawa–Tate, which inspired
how automorphic L-functions have been studied subsequently. Let’s recall how
that goes. Let k be a number field. We have the adeles Ak and the ideles A×

k . We
have a Hecke character

χ : k×\A×
k → C×,

which factors as a product χ =
∏
χv of characters χv : k×v → C× indexed by the

places v of k. (This is of course very useful, but is specific for GL1, and so obscures
some of the more general features.) Let ϕ ∈ S(A) be a Schwartz function, which
could also be a product ϕ =

∏
ϕv of local Schwartz functions ϕv ∈ S(kv). We recall

that this means that

• when v is finite, ϕv is smooth and compactly-supported, and
• when v is archimedean, all derivatives decay faster than any polynomial,

e.g., e−πt
2

.

Furthermore, ϕv = 1Okv
for almost all finite v. We then form

θ(x) =
∑
α∈k

ϕ(αx).

(It’s a good exercise to see how to specialize this to obtain something like (2.1).)
We then form the integral ∫

k×\A×
k

χ(x)|x|sθ(x) d×x.

These integrals converge absolutely for ℜs sufficiently large and unfold in the usual
way, giving (at least for χ not a power of the absolute value, so that we don’t need
to worry about the contribution of α = 0)∫

A×
k

χ(x)|x|sϕ(x) dx.

If ϕ =
∏
ϕv, then these factor further as∏∫

k×v

χv(x)|x|svϕv(x) dx. (2.3)

One can show that the local integrals at non-archimedean places are rational func-
tions, form the greatest common divisor of their denominators, and this turns out
to be the way you can define the local L-function. This is Tate’s thesis. We haven’t
yet really made any reference to multiplicity one. This shows up when you try to
generalize to other settings.

We may think of A×
k as GL1(Ak). Let’s now consider GLn(Ak). We discuss

Godement–Jacquet theory, which is a generalization of what Tate did to GLn.
Let π be a cuspidal automorphic representation (by convention, irreducible). Ab-
stractly, this is isomorphic to a restricted tensor product ⊗πv of irreducible local
representations πv of GLn(kv). We can thus identify an element φ ∈ π with a sum
of tensor products of vectors (although, unlike in the case of characters, it will not
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pointwise be a product of local functions). Now, mimicking what was done before,
we take a Schwartz function ϕ ∈ S(Mn(Ak)), and form a theta function

θ(x) =
∑

α∈Mn(k)

ϕ(αx).

We then form ∫
GLn(k)\GLn(Ak)

φ(x)|det(x)|sθ(x) d×x.

This unfolds to ∫
GLn(A)

φ(x)|detx|sϕ(x) d×x.

But does it factor? Not obviously.
Let’s now form

θ(h, g) =
∑

α∈Mn(k)

ϕ(h−1αg)

and consider ∫
[GLn]

φ(g)|det g|sθ(h, g) dg.

This is now automorphic as a function of h, so we can decompose it with respect
to the automorphic spectrum. To compute the coefficients in that decomposition,
we consider, for φ̃ in the contragredient (or dual) π̃ of π, the iterated integral∫

[GL1
n]

(∫
[GLn]

φ(g)|det g|sθ(h, g) dg

)
φ̃(h) dh,

where GL1
n means either that we mod out by the center or that we restrict to

|det| = 1. Then, reordering terms and unfolding, we obtain∫
GLn(A)

ϕ(g)|det g|s
(∫

[GL1
n]

φ̃(h)φ(hg) dh

)
dg.

We can understand the parenthetical inner integral as

⟨φ̃, π(g)φ⟩,

where

⟨φ1, φ2⟩ =
∫
[GL1

n]

φ1(h)φ2(h) dh.

This pairing defines a G-invariant functional ⟨, ⟩ : π̃ × π → C, which is locally
unique, hence factors as a product of local invariant functionals ⟨, ⟩v : π̃v×πv → C,
thus

⟨, ⟩ = (∗)
∏
v

⟨, ⟩v.

The leading constant (∗) will depend upon our normalizations of the local and
global integrals, and our normalization of the comparison between π and ⊗πv.

This is the first example where multiplicity one shows up in what we’ve discussed.
In the afternoon talk, we’ll very quickly describe a few other automorphic L-function
settings where we see multiplicity one, and then start to move to the Euler system
side of things.

Afternoon talk.
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Factoring the integral is only one step towards understanding the L-functions.
The next thing one needs to do is to compute these local integrals. This of course
seems more tractable than working globally, which is the point. For instance, in
the Iwasawa–Tate setting, when all of the data is unramified (meaning χv is an
unramified character and ϕv is the characteristic function of the ring of integers),
then the local factor in (2.3) is easy to compute, and gives a local zeta function.
This is more complicated in the Godement–Jacquet setting, but still doable. Then
in the ramified situations, there is the question of how to choose good vectors so
that one gets the L-function on the nose. This is useful for many of the applications
that the speaker makes of these kinds of functions. In some settings it’s still much
of an art and there are lots of interesting questions.

Let’s turn to Rankin–Selberg convolutions. We’ll begin classically, say with
holomorphic modular eigenforms f and g of weights kf ≥ kg, say of level 1, i.e., on
SL2(Z). Write

f =
∑

anq
n, g =

∑
bnq

n.

We’ll consider the Dirichlet series ∑
n

anbnn
−s. (2.4)

The integral representation is∫
SL2(Z)\H

f(τ)g(τ)Ek(τ, s)y
kf d vol(τ), (2.5)

where k := kf − kg and

Ek(τ, s) :=
∑

γ∈

∗ ∗
0 ∗

\SL2(Z)

j(γ, τ)−k|y(γ(τ))|k. (2.6)

The way you get from (2.5) to (2.4) is to unfold the sum in (2.6) with the integral

in (2.5), which yields an integral over

(
∗ ∗
0 ∗

)
\H. This is a nice exercise if you

haven’t done it.
What does this have to do with multiplicity one? Maybe we try to set this up a

bit more automorphically. Let π1 and π2 be cuspidal automorphic representations
of GL2(Ak). Let χ1, χ2 be Hecke characters χi : k

×\A×
k → C such that χ1χ2 =

(χπ1χπ2)
−1. Let Is(χ1, χ2) denote the space of functions f : GL2(A) → C that

are smooth (meaning the usual thing at archimedean places and “fixed by an open
subgroup” at finite places) and “K-finite” and satisfying

fs

((
a b
0 d

)
g

)
= χ1(a)χ2(d)

∣∣∣a
d

∣∣∣s+ 1
2

fs(g).

We then define an Eisenstein series by averaging:

E(fs, g) :=
∑

γ∈B(Q)\GL2(Q)

fs(γg).

The Rankin–Selberg integral is now just the integral∫
[GL2]

φ1(g)φ2(g)E(fs, g) dg.
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We can unfold this to obtain∫
Z(A)B(Q)\GL2(A)

φ1(g)φ2(g)fs(g) dg.

Let’s replace φi by its Whittaker expansion

φ1(g) =
∑
a∈k×

Wψ

((
a

1

)
g

)
.

Then, unfolding a bit further, we arrive at∫
Z(A)N(A)\GL2(A)

Wψ(g)φ2(g)fs(g) dg =

∫
Z(A)N(A)\GL2(A)

Wψ(g)W
′
ψ̄(g)fs(g) dg,

whereW ′
ψ is the Whittaker function for φ2 with respect to the conjugate character.

This last integrand is a product of local functions, so the integral factors, assuming
that all vectors in our representations are pure tensors.

Where’s the multiplicity one? It’s hidden, because, just like in the case of GL1

characters, we have taken for one of our automorphic forms something particularly
special, namely an Eisenstein series. The picture that might be better is, to give
something slightly more complicated, there’s something called the triple product
integral. Now we’ll take φi ∈ πi for i = 1, 2, 3, where it’ll be slightly simpler to
assume that at least one is cuspidal. Look at the function∫

[Z\GL2]

φ1(g)φ2(g)φ3(g) dg.

This integral defines a trilinear form on the product of the three representations that
is invariant by the diagonal action of GL2(A), or equivalently, a GL2(A)-invariant
functional Λ on the tensor product π1 ⊗ π2 ⊗ π3, i.e, an element

Λ ∈ HomGL2(A)(π1 ⊗ π2 ⊗ π3,C).
This space is one-dimensional, as are its local avatars:

dimHomGL2(kv)(π1,v ⊗ π2,v ⊗ π3,v) ≤ 1.

We can thus factor Λ =
∏

Λv, where each Λv ∈ HomGL2(kv)(π1,v ⊗ π2,v ⊗ π3,v).
Suppose v is a place for which πi,v is unramified for each i. Then we can take

Λv =

∫
ZN(kv)\GL2(kv)

Wψv
Wψv

(g)fv(g) dg.

Here, locally, we’re realizing the unramified representation π3,v as an induced rep-
resentation π3,v = πv(χ1,v, χ2,v). We didn’t unfold to this computation; this was
all local.

There’s one more example we’d like to emphasize: toric integrals. Let K/k be a
quadratic extension. We can then think of K as a two-dimensional k-space, which
gives a way to identify

GL2/k ∼= Autk(K)←↩ K×.

We might for simplicity that π is a cuspidal automorphic representation of GL2(Ak),
and let φ ∈ π be a cusp form. Let χ : K×\A×

K → C× be a Hecke character for our
extension. Let’s assume that χ |A×

k
= χ−1

π , i.e., the restriction is the inverse of the

central character. We are then going to think of the integral∫
A×

k K
×\A×

K

φ(t)χ(t) d×t
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as defining an element of the space HomA×
k
(π,C(χ−1)), which has dimensional ≤ 1.

Such integrals will thus factor as prodcuts of local linear functionals.
Some of these can be computed quickly in terms of integrals we already know.

Suppose πv is unramified and v splits in K/k. Then

K×
v = k×v × k×v ∼=

{(
a

b

)}
⊆ GL2(k).

We may thus identify χv with a pair of characters (χ1,v, χ2,v). We can define the
local functional ∫

k×v

Wψ

(
t

1

)
χ1,v(t) d

×t,

which defines an element of HomK×
v
(πv,C(χ−1

v )). For unramified data, this evalu-

ates to L(πv, χ1,v). It turns out that (Waldspurger’s formula)∣∣∣∣∫ φ(t)χ(t) d×y

∣∣∣∣2 ∼ L(BCK/k(π)⊗ χ, 12 ).
There’s a similar relation in the triple product case, which we can guess using the
Rankin–Selberg unfolding that we saw earlier.

Remark 2.1. This doesn’t make sense for general arguments other than s = 1
2 ,

except in some form when φ is an Eisenstein series (“formula of Damerell”). One
needs to be able to vary φ (or χ) in a family, preserving the central character
compatibility condition.

All of these examples are special cases of the Gan–Gross–Prasad conjectures,
which we’ll hear more about later in the week.

We’ll now begin by giving one example of an Euler system. Tomorrow, we’ll
explore this in greater generality and more detail. The simplest case is that of
cyclotomic units. Let F be a number field or a local field. Kummer theory gives
an isomorphism

F×/F×N → H1(F, µN ),

as follows. Let α ∈ F×. Choose an nth root α1/N . The ambiguity in this choice
is an element of µN , i.e., an nth root of unity. For any σ ∈ GF , we can look at
σ(α1/N )/α1/N . Since the numerator and denominator are both Nth roots of 1,
the ratio must lie in µN . This gives us a way of constructing elements of H1 very
concretely. The classes we obtain are unramified away from Nα.

Let’s now restrict ourselves to the field Q[µN ]. Restrict the above map to the
unit group of that field:

O×
Q[µN ] → H1(Q(µN ), µpn).

Taking inverse limits, we obtain, with Zp(1) = lim←−µpn (where the Galois group acts

via the cyclotomic character), a map

O×
Q[µN ] ⊗ Zp → H1(Q(µN ),Zp(1)).

Thus, for any (a,N) = 1, we get , say with ζN = e2πi/N ,

ζaN − 1

ζN − 1
7→ zN ,
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say. If we look at the corestriction

coresQ[µNℓ]/Q[µN ](zNℓ) =

{
zN if ℓ | N
(1− Fr−1

ℓ )zN if ℓ ∤ N.

We look at
det
(
1− Fr−1

ℓ X | Zp(1)∗
)
| X = Fr−1

ℓ .

Some idea for checking this: (Z/ℓZ)× ⊂ (Z/ℓNZ)× ∼= Gal(Q(µNℓ)/Q), where
the last map sends a 7→ σα(ζNℓ) = ζaNℓ.

Remark 2.2. Given f a holomorphic modular form, say of weight 2, we have
ωf = f(τ) dτ ∈ H0(X,Ω1

X) ⊆ H1(X,C). Then ∥f∥2 =
∫
X
ωf ∧ ωf .

Similarly, for X ↪→ X × X × X, we get some particular values of the Rankin–
Selberg convolution by looking at

∫
X
ωf∧ωg∧ωEk

. Then from the rational structure
on cohomology, one can get something like rational structure on the L-values.

Remark 2.3. Let’s talk about the corestriction map in this setting. Abstractly,
it’s a map

H1(Q[µNℓ],Zp(1))→ H1(Q[µN ],Zp(1)).
How are we going to understand this? We could of course write it down at the level
of cocycles, or something. But what’s it’s really doing is that if we restrict back,
i.e., compose with the restriction map

H1(Q[µN ],Zp(1))→ H1(Q[µNℓ],Zp(1)), (2.7)

then the composition is just the trace map, given by∑
σ∈Gal(Q[µNℓ]/Q[µN ])

σ.

The restriction map (2.7) is actually an injection because there are no Galois in-
variants of Zp(1).

Also, we have the Kummer map

Q[µNℓ]
× Kummer−−−−−→ H1(Q[µNℓ],Zp(1)).

And this construction is Galois-invariant. We have the trace map α 7→
∏
σ σ(α)

from Q[µNℓ]
× → Q[µN ]×. We claim that this induces the corestriction map via the

Kummer map. This remains the case when we tensor with Zp.
So when we’re dealing with corestriction, what we really want to understand is

what is the norm of the particular α that we’re working with.
All of this is fairly formal applied to a specific setting. The Kummer map is also

a connecting map in a long exact sequence of Galois cohomology, associated to

0→ µpn → F̄× α7→αpn

−−−−−→ F̄× → 0.

From the formal stuff, we have an arithmetic question. We take

α =
ζaNℓ − 1

ζNℓ − 1
,

and we want to know, what is the norm of this element? Look at

normQ(µNℓ)/Q(µN )(α).

We have
Gal(Q(µNℓ)/Q(µN )) ⊆ Gal(Q(µNℓ)/Q) ∼= (Z/Nℓ)×,
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The subgroup here will be identified with congruence classes b satisfying b ≡ 1
(mod N). The last isomorphism is given by σc 7→ c, where σc(ζNℓ) = ζcNℓ. Now,
suppose for instance that ℓ ∤ N . Then ζbℓNℓ = ζbN = ζN . As b ∈ (Z/Nℓ)× runs over
ℓ− 1 residue classes modulo ≡ 1 (mod N), then ζbNℓ runs over ℓth roots of ζN , but

excluding ζℓ
−1

N . A short calculation then gives the claim corestriction formula. In
the other case where ℓ | N , b runs over ℓ classes, and we get the other answer.

We’re going to continue our discussion of Euler systems. We turn to the example
given by Heegner points. Let K/Q be an imaginary quadratic field, with ring of
integers OK . Let N be a positive integer such that all primes ℓ | N split in K/Q.
We take

X0(N) = Γ0(N)\[h ⊔ P1(Q)],

and write τ ∈ h. This classifies elliptic curves together with an isogeny of order N ,
e.g.,

E := C/Z⊕ Zτ → E′ := C/ 1
N (Z+NτZ) ∼= C/Z+NτZ,

whose kernel is 1
NZ/Z.

We’re going to produce some points on X0(N). Let c be positive integer. We
can have an order

Oc := Z+ cOK ⊆ OK .
This gives us a lattice inside the complex numbers (having chosen a complex em-
bedding of K). We can then form the quotient C/Oc. To produce a lattice that is
slightly larger, we will use that each ℓ | N splits to choose an ideal n ⊆ OK such
that OK/n ∼= Z/NZ. We then obtain an isogeny of elliptic curves[

C/Oc → C/n−1Oc
]
∈ X0(N)(K[c]),

where K[c] denotes the ring class field of K of conductor c. To explain what this

means, we introduce some notation. For a module M , write M̂ := M ⊗ Ẑ, where
Ẑ =

∏
ℓ Zℓ. (For instance, if M is a Q-module, then we may also write M̂ as

M ⊗Q Af .) Class field theory tells us that

Pic(Oc) = K×\K̂×/Ô×
c

rec−−→ Gal(K[c]/K),

[b] 7→ σb.

More generally, for any fractional ideal a of Oc, we get a point

xc(a) :=
[
C/a→ C/n−1a

]
∈ X0(N)(K[c]).

The action of Gal(K[c]/K) on X0(N)(K[c]) on these points is described by the
relation

σbxc(a) = xc(b
−1a). (2.8)

This is the content of CM theory.
Now we’re going to look at the divisors

yc(a) := xc(a)−∞
obtained by subtracting off the cusp at infinity, which is defined over Q. This
difference defines an element of the Jacobian J0(N) := Jac(X0(N)), defined over
K[c]. The Jacobian is an abelian variety. For abelian varieties, there is a construc-
tion very similar to Kummer theory that gives us an analogue of the Kummer map
defined yesterday,

J0(N)(K[c])→ H1(K[c], J0(N)[pm]),
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where J0(N)[pm] is the pm-torsion subgroup of the Jacobian. The map is defined
as follows. Given y ∈ J0(N)(K[c]), let us choose y′ so that pmy′ = y. We send this
to the class of the cocycle σ 7→ σ(y′) − y′. Applying this map to yc(a) gives us a
cohomology class

zc(a) ∈ H1(K[c], J0(N)[pm]).

In the special case where a = Oc, we drop it from the notation and write simply
zc.

Suppose now that ℓ ∤ cDKN . Then we’re going to look at what happens when
we take the point zcℓ (attached as above to the order Ocℓ) and form the norm∑

σ∈Gal(K[cℓ]/K[c])

σzcℓ.

We can write this as the sum ∑
b∈ker(PicOcℓ→PicOc)

σbzcℓ.

We can in turn rewrite σbzcℓ as
∑

b ycℓ(b
−1) − ∞, summing over the same b as

before. Now, how many b’s are there, and what is this sum?
Suppose that ℓ is inert in K. Comparing what happens with c and cℓ, we get

(OK ⊗ Zℓ)×

((Z+ ℓOK)⊗ Zℓ)×
,

which is cyclic of order ℓ + 1. Now, b lying in the kernel of the above map means
that bOc is a principal ideal, say βOc with β ∈ K×. If we look at βb−1Oc, then
we see that inside Oc, it has index ℓ. As b varies, this exhausts all lattices of index
ℓ. By definition of the Hecke operator Tℓ, we see that∑

b

(
ycℓ(b

−1)−∞
)
= Tℓ(yc −∞).

Under the Kummer map, this tells us that

corK[cℓ]/K[c] zcℓ = Tℓzc.

Kolyvagin used these relations as follows.

yK = traceK[1]/K y1 ∈ J0(N)(K)
ϕE−−→ E(K),

where E is an elliptic curve of conductor N with a modular parametrization ϕN :
X0(N) → E sending ∞ to 0. Using relations, Kolyvagin could show that if the
point is not torsion, then the rank of the elliptic curve is 1. Around the same time,
Gross–Zagier showed that the Néron–Tate height of this point is nonzero if and
only if L-function for E/K vanishes exactly to order one. This gave some of the
first theoretical evidence for the Birch and Swinnerton-Dyer conjecture. This was
a spectacular application by Kolyvagin that got people interested in Euler systems.

You can also run Kolyvagin’s argument in another way. You can look at the
primes ℓ that are split in K, say ℓ = λλ̄. Then

(OK ⊗ Zℓ)×

((Z+ ℓOK)⊗ Zℓ)×
=

O×
λ ×O

×
λ̄

{(a, b) : a ≡ b(ℓ)}
,
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where the numerator is really Z×
ℓ ×Z

×
ℓ . Arguing as above, we’re no longer summing

over all the lattices, but instead we miss two of them: λOc and λ̄Oc. One obtains∑
b

(ycℓ(b
−1)−∞) = Tℓ(yc −∞)− (Fr−1

λ + Fr−1
λ̄

)(yc −∞).

(The inverses come from (2.8).)
Work of the speaker and Jetchev and Wan used the split primes to do something

like what Kolyvagin did.
Let c = λ1 · · ·λr be a squarefree product of ideals λi ∤ NDK of degree 1 in K,

with λi = λi. Let c be the integer such that (c) = c ∩ Z. Let z(c) be basically the
class that we were just analyzing, but let’s modify it slightly:

z(c) :=

r∏
i=1

(−Frλi) zc ∈ H1(K[c], TpJ0(N)), (2.9)

where TpJ0(N) = lim←− J0(N)[pm]. We obtain now, for λ | ℓ,

coresK[cℓ]/K[c] z(cλ) =
(
Fr−2
λ − TℓFr

−1
λ + 1

)
z(c). (2.10)

Let’s think about this last expression in terms of the Hecke polynomialX2−TℓX+ℓ.
You can see that if we evaluate this at λ−1, we almost get the quantity appearing
on the right hand side of (2.10):

(X2 − TℓX + ℓ) |X=Fr−1
λ
.

They are congruent modulo ℓ − 1, which is N(λ) − 1. When working with Euler
systems, it’s acceptable to work with congruences modulo ℓ− 1. There’s a general
way to massage those classes so that they give the relations on the nose, but there’s
no need to do so. Later, we’ll pose a question that will suggest that this comparison
is a feature of some integral representation theory, once we see where these norm
relations come from in those terms. In any event, once you have these relations,
you can take these objects and run Kolyvagin’s argument and reprove Kolyvagin’s
theorem.

We next want to explain how to set up the construction of the Kolyvagin system
in such a way that some representation theory naturally shows up, with this Galois
relation (2.10) showing up as something like a Hecke module, which in turn is closely
related to representation theory. The argument we’re going to give generalizes
quite significantly, for instance, it produces an Euler system in the sense of these
split primes for the diagonal cycles coming from the arithmetic Gan–Gross–Prasad
settings, and one can generalize Kolyvagin’s statement to a rank one statement
about Selmer groups for certain Rankin–Selberg convolutions of GLn × GLn+1.
With Euler systems, we’re trying to bound the orders of Selmer groups of elliptic
curves, something like H1

f (Q, E[pN ]), where the subscript f denotes some sort of
Block–Kato condition coming from the geometry of the elliptic curve. One way
to bound a Selmer group like this is to use global duality to give classes in the
arithmetic dual, i.e., H1

f (Q, E[pN ]∗), where

E[pN ]∗ = Hom(E[pN ],Qp/Zp(1)). (2.11)

Here one wants to allow ramification at good primes ℓ, chosen to capture the orders
of classes that we want to control. One can then reduce to looking at

H1
ur(Qℓ, E[pN ]). (2.12)
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The local duality relates this to H1(Iℓ, E[pN ]∗)GQℓ . So if we can produce a class
in the latter that is highly ramified (of large order), then we can force the class in
(2.12) to have small order. That, in a nutshell, is how Selmer groups are bounded.
The whole trick is to produce ramified classes in (2.11) that you can measure the
size of in some way. Now, producing things that are provably ramified is a hard
problem. There are few cases where we can do this. It’s much easier to check
that something is unramified (think of the criterion of Néron–Ogg–Shafarevich or
something like that). What Kolyvagin’s argument does is, he says well, let’s start
off with classes (2.9) that are over ramified extensions. If they are truly over that
ramified extension and not, say, defined over some extension with less ramification,
then Kolyvagin can use that to produce ramified classes, and it is exactly these
relations (2.10) that allow him to understand how ramified these classes actually
are. These norm relations are thus crucial for producing ramified classes with
controlled or measurable ramification. That’s sort of the algebra background for
why one is interested in Euler systems.

We’ll now describe a more representation-theoretic picture that produces these
Kolyvagin classes. Recall the situation. We have the modular curve X0(N) and the
Heegner point xc ∈ X0(N)(K[c]), corresponding to an isogeny [C/Oc → C/nOc].
The modular curve is a curve defined over Q, so we can think of this point as
defining a map

SpecK[c]→ X0(N).

We can base our curve to a curve over K[c], yielding the following map of varieties
over K[c]:

SpecK[c]
xc−→ X0(N)× SpecK[c].

The left hand side has dimension 0, while the right hand side has dimension 1.
There is thus a cycle class map

H0(SpecK[c])
cyc−−→ H2(X0(N)/SpecK[c],Zp(1)).

(In general, the exponent is 2d, where d is the codimension.)
This is a single point. What we did before was to take the difference between

two points,

cyc(xc)− cyc(∞) ∈ H2(X0(N)× SpecK[c],Zp(1))0, (2.13)

but it’s now homologically trivial in the sense that if we pass to the algebraic
closure, i.e., we consider the degree map

H2(X0(N)× SpecK[c],Zp(1))0
deg−−→ H2(X0(N)× Spec K̄[c],Zp(1))0 ∼= Zp

which the difference (2.13) lies in the kernel of, then we obtain the element

zc ∈ H1(K[c], H1(X0(N)/K̄,Zp(1))) = H1(K[c], TpJ0(N)).

Now, we don’t want to keep tracking the field of definition, so let’s think of xc
as a map over K. Starting with

SpecK[c](K̄) =
{
σ : K[c] ↪→ K̄

}
≃ Gal(K[c]/K) = K×\K̂×/Ô×

c ,

we can think of

H0(K×\K̂×/Ô×
c )

cyc−−→ H2(X0(N)×K×\K̂×/Ô×
c ,Zp(1)).

There is an action of Gal(K[c]/K) onX0(N)×K×\K̂×/Ô×
c that we may reinterpret

as multiplication by K̂×.
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Now, let’s take an embedding K ↪→ M2(Q) such that OK = K ∩M2(Z). This
induces K× ↪→ GL2(Q). We fix τ0 ∈ h such that StabGL+

2 (Q)(τ) = K×. For a

compact open subgroup U of GL2(Af ), we set

XU := GL2(Q)\[h±,∗ ×GL2(Af )/U ],

where ∗ means “add the cusps” so as to obtain a compactification. The above
contains the set of “CM points”

{[τ0, g] : g ∈ GL2(Af )} ,

which comes with with an action of K̂× via the reciprocity map K̂× rec−−→ Gab
K

defined by

rec(α)[τ0, g] = [τ0, αg].

We might as well take

U = U0(N) = GL2(Ẑ) ∩
(
∗ ∗
N∗ ∗

)
.

In that case, xc = [τ0, gc] for a particular choice of gc.
This is the classical picture of Heegner points. We’re going to change the picture

just a little bit. Think

H := Q×\K× → G :=
GL2 ×K×

Q× . (2.14)

(The right hand side may be thought of as GU(1, 1), if you’d like.) We get

XU0(N) → ShG(U) := G(Q)\G(A)/K∞U, U := U0(N)× V.

We also get

ShH(V ) := Q̂×K×\K̂×/V.

¡++¿ There is a map

ShG(U)→ ShH(V ).

In the interest of time, we’re going to cut to the chase here. Look at compactly
supported functions on H(Af )\G(Af ), valued in Zp. We’ll produce elements in the
Shimura variety of G (over K) valued in Zp(1):

Cc(H(Af )\G(Af ),Zp)→ H2
ct(ShG/K ,Zp(1)) (2.15)

1(gU) 7→ UH = Ĥ×gUg−1.

Now we have

ShH(UH)
cyc−−→ H2(ShG(gUg

−1),Zp(1))
g−→ H2(ShG(U),Zp(1)).

These maps are G(Af )-equivariant, or “Hecke equivariant”.

Exercise 2.1. Recover the Heegner point Euler system that we wrote down before
by taking the right open compact and the right elements gc, with V coming from
Oc.

The point is that through this process, the Galois action has been subsumed into
some kind of group action. What’s really going on in some ways is that the Shimura
varieties for these unitary groups are just some copies of modular curves, where the
number of copies is just the class group of some ring class extension. Once you have
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this picture, the Euler system should just be the image of a bunch of elements on
the left hand side of (2.15), and you just have to choose the elements:

Euler system = image of elements in Cc((H\G)(Af )/Zp).

This can factor. Suppose c = ℓ1 · · · ℓr is ap roduct of primes. We might then take

φc = φS ⊗
⊗
ℓi

φℓi ⊗
⊗
ℓ̸=ℓi
ℓ/∈S

φ0
ℓ ∈

(
Cc(X(ZS),Zp)⊗ Cc(X(ASf ),Zp)

)Uc

,

where Uc := U0(N) × Ô×
c , the φℓi are chosen well and φ0

ℓ := 1(G(Zℓ)) is the
unramified choice. By choosing φS appropriately, we can even arrange that we’re
in the homologically trivial classes, hence giving rise to

zc = cyc(φc)

in Galois cohomology; this is easy to arrange by just choosing the right section for
φS , which amounts to acting by a Hecke operator of degree zero or something like
that. The norm relations are all about the φℓi . We have

corK[cℓ]/K[c]zcℓ = cyc

 ∑
t∈(Oc⊗Zℓ)×/(Ôcℓ⊗Zℓ)×

(1, t)φcℓ

 ∈ Cc(X(Af ),Zp)Uc .

Suppose ℓ ∤ c. Then we have

φ0
ℓ = 1(X(Zℓ))

and

φ′
ℓ := traceφℓ =

∑
t

φℓ(x(1, t)).

What we’re interested in is, how to compare these two? Both of the above define
elements of

Cc(H\G(Qℓ),Zp)G(Zℓ) = Cc(H\G(Qℓ)/G(Zℓ),Zp).
This space is cyclic for the action of the Hecke algebra (at least after tensoring by
Qp)

H(G//G(Zℓ),Qp)
generated with respect to that action by the φ0

ℓ . So we can write

φ′
ℓ = Pℓ ∗ φ0

ℓ .

In the remaining minutes, let’s say something about how that calculation might go.
Let π and χ be unramified representations of GL2(Qℓ) and K×

ℓ , respectively,
with χπχ |Q×

ℓ
= 1. This pair defines a representation of the group G as in (2.14).

Take a spherical vector θ ∈ π. Maybe we realize π in the Whittaker model. Let’s
also assume that ℓ splits. The sort of functional we’re looking at is∫

(g,t0)∈H\G(Qℓ)

∫
t∈Q×

ℓ \K×
ℓ

θ(tg)χ(tt0)φ(g, t0) d
×t = Λ(φ).

Taking

φ = φ′
ℓ = Pℓ ∗ φ0

ℓ ,

we obtain

Λ(φ′
ℓ) = ξ(π,χ)(Pℓ) · Λ(φ0

ℓ),
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where

Λ(φ0
ℓ) =

∫
Q×

ℓ \K×
ℓ

θ(t)χ(t) d×t.

We might want to arrange that 1 = Λ(φ′
ℓ). Since Λ(φ0

ℓ) is the L-factor, this
motivates taking ξ(Pℓ) to be the Hecke polynomial of which the L-factor is the
inverse. Here we’re assuming that ℓ splits in K/Q.

Locally, we can think

K×
ℓ = O×

ℓ ×O
×
ℓ ↪→ GL2(Qℓ),

where the inclusion is the diagonal embedding. We can take

gℓ =

(
1 1

ℓ
0 1

)
.

Then

φ′
ℓ =

∑
a∈(Z/ℓ)×

φ0
ℓ

((
1 a

ℓ
0 1

))
.

You end up with something that’s not quite what you want, but is congruent to
what you want modulo ℓ− 1. Anyway, the norm relation from before falls out.

You can do this more generally for H ⊂ G defining Shimura varieties. One can
is to take

G = G
(
U(n, 1)×U(n− 1, 1)×U(1)

)
,

which contains

H = G
(
U(n− 1, 1)×U(1)

)
.

(This belongs to the “GGP” setting.) We have a corresponding map of Shimura
varieties

ShH → ShG

of dimensions n− 1 and n+ n− 1 = 2n− 1, so the codimension is n, and we get a
cycle class map

H0(ShH)
cyc−−→ H2n(ShG, n).

This leads to

H1(ring class fields, H2n−1(ShU(n−1,1)×U(n,1))).

See the work of the speaker and Xinwen Wan.

Remark 2.4. We consider

Cc(X(Qℓ),Zp)G(Zℓ) ⊇ traceCc(X(Qℓ),Zp)Gℓ(Zℓ),

for some subgroup Gℓ(Zℓ) ⊆ G(Zℓ). What is the right hand side? Contains(
Pℓ, (ℓ− 1)Cc(· · · )G(Zℓ)

)
.

Remark 2.5. See paper of David Loeffler regarding the ramified primes
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3. Jayce Getz’s lectures

3.1. Langlands L-functions and converse theorem. Let F be a number field,
AF the ring of adeles, and G a split reductive group over F . Let AG denote the
neutral component in the real topology of the greatest Q-split torus in ResF/Q ZG.
(For example, AGLr

= R>0Ir.)
Goal: given an L-map ρ : LG → GLn(C), construct a transfer of automorphic

representations of G(AF ) to GLn(AF ).
Given an automorphic representationd π of G(AF ), we can form the Langlands

L-function

L(s, π, ρ) :=
∏
v

L(s, πv, ρ).

If π is unramified at v, then

L(s, πv, ρ) =
1

det(1− ρ(c(πv))q−sv )
,

where c(πv) ∈ LG is the Langlands class of πv.
Let ψ : F\AF → C× be a nontrivial character. Then we obtain ε-factors

ε(s, πv, ρ, ψv), defined via local Langlands and the known definition in the case
of GLn. There is also the γ-factor

γ(s, πv, ρ, ψv) :=
ε(s, πv, ρ, ψv)L(1− s, π∨

v , ρ)

L(s, πv, ρ)
.

Conjecture 3.1 (Langlands). L(s, π, ρ) admits a meromorphic continuation to C,
is bounded in vertical strips, and satisfies a functional equation

L(s, π, ρ) = ε(s, π, ρ, ψ)L(1− s, π∨, ρ).

If L(s, π, ρ) satisfies the conjecture, then we say that it is nice.
One case where we know this in complete generality is the case of the standard

representation

ρ := ρst = triv × Id : LGLn = GalF ×GLn(C)→ GLn(C),

in which case we write simply

L(s, π) := L(s, π, ρst).

Then the conjecture is known, and you can prove it in three different ways that are
largely distinct:

• Godement–Jacquet (which preceded the general formulation of this conjec-
ture).
• The Rankin–Selberg method.
• The Langlands–Shahidi method.

At first glance, none of these methods will work to address the general conjecture,
but we’ll see that there is a sort of modification of the first two that might be
applicable.

Now, what’s the converse theorem?

Theorem 3.2 (Cogdell–Piatetski-Shapiro; Hecke, Weil). Let σ be an admissible
irreducible representation of GLn(AF ). (In order to get this sort of thing, you have
to choose a bunch of local data and outside finitely many places you declare that it
is unramified.) Assume that
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• the central character ωσ is ZGLn(F )-invariant,
• σv is generic for all v, and
• L(s, σ) converges for ℜs sufficiently large.

Let S be a finite set of finite primes. Assume that L(s, σ×σ′) is nice and holomor-
phic for all cuspidal automorphic representations σ′ of GLm(AF ) unramified at S,
with 1 ≤ m ≤ n − 2 (for n ≥ 2; for n = 2, just take m = 1). Then there exists
an automorphic representation π′ of GLn(AF ) that is nearly equivalent to σ in the
sense that σv ∼= π′

v for all s /∈ S.

To see the relevance of this, take π on G(AF ), and take σ = ρ(π), giving an
admissible representation for almost all places (assuming the local Langlands cor-
respondence).

This gives some overplay of the interplay between L-functions and automorphic
representations and exactly how the two are interrlated via functoriality. This sort
of thing is in the background when you read things on the Braverman–Kazhdan
program, Beyond Endoscopy, etc.

Now let’s talk about a particular case.

3.2. Rankin–Selberg products and triple products. Let r = (r1, r2, r3). Set
GLr := GLr1 ×GLr2 ×GLr3 . We have an L-map that we call the Rankin–Selberg
product (taking complex points, say)

⊗2 : L(GLr1 ×GLr2)→ GLr1r2 , (3.1)

⊗3 : LGLr → GLr1r2r3 . (3.2)

We’ll think of these as hypothetical Langlands transfers.

Theorem 3.3 (Chevalley). Given any faithful representation ρ : H → GLn (say
with H reductive), any other representation is a subrepresentation of ρ⊗m ⊗ ρ∨⊗n

for some m and n.

Now, LG is not a reductive group, but ignore that fact for a moment. Say we’re
given an L-map

ρ : LG→ GLn. (3.3)

Suppose we know the Rankin–Selberg transfer (3.1) as well as transfer for (3.3).
Then, any transfer from G to GL(V ) is a “subtransfer” of some ρ⊗m ⊗ ρ∨⊗n.

Question 3.4 (Not an exercise). Given functorial transfers ρ⊗m ⊗ ρ∨⊗n, how to
pick out the transfers associated to subrepresentations?

By analogy to representation theory, some of the basic ways to construct new
representations from old ones is to take direct sums, induced representations and
tensor products. In the automorphic world, we know how to do the first two
(isobaric sum and Eisenstein series), but not the third.

The importance of triple product L-functions (attached to (3.2)) is that if they
are nice, then, using the converse theorem, we get that Rankin–Selberg transfers
exist. This is the motivation for what we’re about to do.
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3.3. Poisson summation conjecture. In the exercises, we’ll see the Godement–
Jacquet Poisson summation formula for Mn×n, which leads to the functional equa-
tion and analytic continuation of the standard L-functions L(s, π). Bravmern–
Kazhdan suggest replacing Mn×n by a certain Mρ, and try to run the argument to
study L(s, π, ρ). This proposal was refined by Ngô. Sakellaridis suggested working
with some spherical varieties. Need a little more flexibility.

We’ll start with the geometric setup.

3.3.1. Global setting. Let F be a number field, let R be an F -algebra, and let G/F
be a reductive group. Assume given an action

R : X ×G→ X

on an affine G-scheme X. Assume that there is a unique open orbit X◦ ⊆ X. Let
Z+
G denote the greatest split torus in ZG (e.g., for G = GLn, Z

+
G = Gm). Fix an

isomorphism Gnm
∼=−→ Z+

G . Assume that the pullback R : X × Gnm → X extends to
R : X ×Gna → X.

Example 3.5. X = Ga (which we don’t write as A1, because that denotes the
adeles). Then the map X ×Gm → X given by (t, a) 7→ ta extends to Ga ⊃ Gm (at
0, but not at ∞).

Assume that there exists an automorphic ι : G → G such that ι(z) = z−1 for
z ∈ Z+

G(R).

Example 3.6. Take X to be a vector space, G = GLX , ι(g) = g−⊺, and X(R) :=
{x ∈ Rn | Q(x) = 0}, where Q is an anisotropic quadratic form. Or take G = GOQ,
and ι(g) = simil(g−1)g.

We need a generalization. In integral representations, you often need some sort
of Whittaker or Fourier coefficients to integrate against. The reason is that if you
don’t have it, then when you integrate against cusp forms, you get zero. If we don’t
have this in the cases of interest, then we end up getting zero. There’s a geometric
way of phrasing this:

Definition 3.7. Suppose given a Gna -torsor p : V ◦ → X◦ equipped with a Gna ⋊G-
action. Assume that p is Gna ⋊G-equivariant. Consider the map

V ◦(R)×Rn ×G(R)→ V ◦(R)×Rn,

(v, z, g) 7→ (vg, (0× g)−1z(0× g)).
Assume given Ψ : V ◦ ×Gna → Ga such that

Ψ1 Ψ factors through p× id : V ◦ ×Gna → X◦ ×Gna .
Ψ2 Ψ is G-invariant.
Ψ3 For each w ∈ V ◦(R), the map Ψ(w, •) : Gna,R → Ga,R is a group homomor-

phism.

An affine Ψ-bundle is a pair (p : V ◦ → X◦,Ψ) as above.

Given w ∈ V ◦(R), set x := p(w). We obtain Rn
∼=−→ V 0

x (R), z 7→ wz. For
g ∈ Gλ(R), there is a unique zw(g) ∈ Rn such that wzw(g) = wg. Then Ψw(g) =
Ψ(w, zw(g)).

Lemma 3.8. Ψw : Gx → Ga is a character, depending only upon x.
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This is the geometry that underlies the Poisson summation conjecture. In the
remaining time today, we’ll start doing some of the harmonic analysis. We’ll enrich
the geometry by introducing some function spaces on the F -points of everything.
We’ll start that process now and continue it in the next lecture.

3.3.2. Local harmonic analysis. Start with some global character ψ : F\AF → C×.
Let v be a place of F . Define F = Fv, ψ = ψv. Thus, we’ll work locally and omit
v from notation. We ask for a Schwartz space sitting as follows:

C∞
c (X◦(F )) ⊆ S(X(F )) ⊆ C∞(X◦(F )) ∩ L2(X◦(F )).

(This assumes that we have an invariant measure to define L2. It’s better in some
sense to work instead with half-densities.) We want the Schwartz space to be stable
under G(F ). One can do a bit more: one can form an εψ-hermitian bundle over
X◦(F ), using the affine Ψ-bundle just mentioned. The sections are

{f ∈ C∞(V ◦(F )) | R(a× I)f(w) = ψ(Ψ(w, a)f(w))} .

The motivation is that if you don’t incorporate such sections rather than just func-
tions, then you’ll get zero when you try to integrate against cusp forms. Consider
for instance a cusp form φ on GL2(AF ). Then∫

[Ga]

φ

(
1 x
0 1

)
dx = 0,

while ∫
[Ga]

φ

(
1 x
0 1

)
ψ(x) dx dx =Wφ

ψ (1).

Actually, it’s better, and we do it in the paper (see the course references (TODO:
add link here)), and you need it. We twist by half-densities: εψ ⊗ |Λ|1/2 = Lψ.
These are canonical – no choice of measure. They are helpful for normalization.
On the other hand, you can’t evaluate at points. But you can work around this.
Using these makes the formulation of the theory much simpler. Another benefit is
that with half-densities, Schwartz spaces behave well under restriction. Maybe the
reason behind this might be an exercise:

Exercise 3.1. L2(X◦(F ), |Λ|1/2) is a unitary G(F )-representation.

We continue now with harmonic analysis over a local field F . Let X × G → X
be a G-variety, with open G-orbit X◦ ⊂ X. We’ll ignore the half-densities “Lψ”
discussed earlier.

Recall that we are looking for a Schwartz space S(X(F )) sitting as follows:

C∞
c (X◦(F )) ⊂ S(X(F )) ⊂ C∞ ∩ L2(X◦(F )).

We moreover have the following desiderata for the Schwartz space:

• It should be stable under G(F ).
• There should be a unitary “Fourier transform” FX ⟳ S(X(F )).
• We should have the compatibility FX ◦ R(g) = R(ι(g))Fx

We caution that elements of S(X(F )) need not be defined on all of X(F ). We want
the following:

(1) In the archimedean case, we want S(X(F )) to be a Frechét space, with the
action continuous.



31

(2) We want elements of S(X(F )) to enjoy “rapid decay at∞”. In the archimedean
case, this means dominated by a Schwartz function after an affine embed-
ding. In the non-archimedean case, it means supported on a compact subset
of X(F ) (not X◦(F )).

(3) We want the space to be local: given a G-equivariant embedding X ↪→ Gna ,
we want the space to be preserved under multiplication by restrictions of
functions in S(Fn).

In the unramified case, we ask that for a basic function bX ∈ S(X(F )) such that
X◦(OF ) ⊊ supp bX ⊆ X(OF ), with FX(bX) = bX .

In many cases, one can construct this. For instance, the case of P der\G
aff

was
studied by Braverman–Kazhdan, refined by Getz–Liu, and further by Getz–Hsu–
Leslie.

3.3.3. Poisson summation formula. Let F again be a number field. Assume that
S(X(Fv)) has been constructed for all places v. We then take

S(X(AF )) =
⊗
v|∞

S(X(Fv))⊗
⊗
v∤∞

′
S(X(Fv)),

where the restricted tensor product is with respect to the bXFv
.

We set FX := ⊗vFXFv
, which acts on S(X(AF )). If

f = fv1fv2f
v1v2 with supp fv1 ⊂ X◦(Fv1) and suppFX(fv2) ⊂ X◦(Fv2), (3.4)

then the Poisson summation conjecture is that is the statement that∑
x∈X◦(F )

f(x) =
∑

x∈X◦(F )

F(f)(x).

We remark that this may not be true in general. We expect it to be true for
reductive monoids and more generally in multiplicity one situations. One thing
we’ll talk about in later lectures is how one can prove new types of formulas of this
type from old ones. We’ll see examples where even if you’re ultimately interested
in situations with multiplicity one (spherical varieties), it may be useful to pass
outside that setting.

Now, Poisson summation is a very useful formula in analysis, but why would
someone outside representation theory care about this? The reason is the connec-
tion to zeta integrals. Suppose π is cuspidal in AG\G(AF ), and let φ ∈ π. Write
Z+
G = Gnm. We assume given characters

ηs : G(AF )→ (A×
F )

n x 7→
∏

|xi|si−−−−−−−→ C×.

Given f ∈ S(X(AF )), we form the zeta integral

Z(f, φ, s) =

∫
[G]

∑
x∈X◦(F )

f(xg)φ(g)ηs(g) dg.

Morally, the Poisson summation conjecture implies that

Z(f, φ, s) = Z(FX(f), φ∨, 1− s),

where φ∨(g) = φ(ι(g)) is just defined using this automorphism that we mentioned
earlier. These sort of period integrals have appeared in almost every talk that we’ve
seen this week.
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We’re primarily interested in the Eulerian case, i.e., when

Z(f, φ, s) =
∏
v

Z(fv, φv, s)

for pure tensors f = ⊗vfv and φ = ⊗vφv.

3.4. The spectral argument. Known properties of L-functions imply cases of the
Poisson summation conjecture. (This is analogous to the fact that the functional
equation of the Riemann zeta function is equivalent to Poisson summation for Z.)
Why would you do this, given that it seems circular?

(1) It puts the local theory on firmer footing.
(2) It’s a check on the Poisson summation conjecture.
(3) We can produce new Poisson summation formulae from old ones. (If you

place it in the right context, the Rankin–Selberg method is a consequence
of this. It starts by taking known properties of Eisenstein series, which can
always be understood as a case of the Poisson summation conjecture, and
then applies it to new L-functions.)

(4) “Boundary terms lead to residue kernels.” We won’t have much time to
talk about this point in these lectures, but the idea is that if you want to
remove the condition (3.4), you’ll get new boundary terms, which can in
turn be related to residues of L-functions.

3.4.1. Plancherel decomposition. Let’s talk about this spectral argument, starting
locally. A nice reference is [2]. Recall that we expect

C∞
c (X◦(F )) ⊊ S(X(F )) ⊊ C(X(F )) ⊊ L2(X(F )),

where C denotes the Harish–Chandra Schwartz space. We may write

L2(X◦(F )) =

∫
Ĝ(F )

Vπ dµX(π)

for some Borel measure dµX(π). (If you’re not familiar with these, they’re analogous
to writing L2(R) =

∫
Ceit dt.) We assume that the support of dµX is contained in

the tempered spectrum Tp(G(F )). For each π, we have a projection map

απ : C∞
c (X◦(F ))→ Vπ,

with adjoint

βπ : V∞
π → C∞(X◦(F )).

For f ∈ C∞
c (X◦(F )), we have

f(x) =

∫
Tp(G(F ))

fπ(x) dµX(π) when fπ = βπ ◦ απ(f).

3.4.2. L-functions. Recall that we have our torus

Z+
G −−−−→ Gnmy y

Z+
G −−−−→ Gna .
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Recall that we asked that the action map X◦ × Z+
G → X◦ extends to a map (no

longer an action) X × Z+
G → X. We can choose di : G→ Gm such that

Z+
G → G

∏
di−−−→ Gnm

is an isogeny. For s ∈ Cn, set

ηs(g) :=
∏
|di(g)|si .

We record Hypothesis L: there exists ri :
LG → GLvi(C), for 1 ≤ i ≤ n, such

that when F is non-archimedean, for all f ∈ C∞
c (X(F )) and ϕ ∈ C∞

c (X◦(F ))e, we
have

⟨f, ϕπ ⊗ ηs⟩∏
L( 12 + si, π, ri)

∈ C[q±s1 , . . . , q±sn ].

See the work of Sakellaridis–Venkatesh, Ichino–Ikeda, and our paper in the list of
references. The idea is that some “almost L-functions” (they would be actual L-
functions if the ratio were 1 rather than some polynomial) control the boundary
asymptotics.

A basic example is when X◦ = Gm and X = Ga, where the asymptotics near
zero are controlled by the local zeta factor ζ(s).

There’s another hypothesis that’s useful: Multiplicity one. This says that for
tempered π and generic s ∈ Cn, we have

dimHom(Vπ ⊗ ηs ⊗ C∞(X◦(F )),C) = 1.

(This was one of the motivations for Sakellaridis to focus on spherical varieties in
his early papers.)

3.4.3. Construction of a Schwartz space. Given the above, we can give our first
pass at the definition of the Schwartz space. Assume that

f(x) =

∫
Tp(G(F ))

fπ(x) dµX(π).

Assume Hypothesis L and Multiplicity One. If F is non-archimedean, then our first
approximation at a definition is that

Snaive(X(F )) =

{
f ∈ C(X◦(F )) | π 7→ fπ∏

i L(
1
2 , π, ri)

is polynomial

}
.

(Our treatment is inspired by [3, §2.6].) A polynomial function on (R/2πi log q)n is a
function of the form s 7→ p(q−s, qs) for some p ∈ C[x, y]/(xy−1). Locally, Tp(G(F ))
is a quotient of (R/2πi log q)n by a finite group. A polynomial function on Tp(G(F ))
is a function that pulls back to a polynomial function on (R/2πi log q)n. (You can
ask me later to give an example.) Define the basic function to be

bX =

∫
Tp(G(F ))

∏
i

L( 12 , π, ri) · 1X◦(OF )π dµX(π)

and

FX(f) :=

∫
Tp(G(F ))

∏
i

γ( 12 , π, ri) · fπ∨ dµX(π).

Then FX acts on Snaive(X(F )). (This should be an approximation to the Schwartz
space, but too big.)



34

3.4.4. The spectral argument. We define S(X(AF )) to be a restricted tensor prod-
uct, as before.

Exercise 3.2. Derive the Poisson summation formula for Z ⊂ R from the functional
equation of the Riemann zeta function ζ(s).

Generalizing this, you can show that if L(s, π, ri) is nice for all i, then the Poisson
summation conjecture holds for X. We’re not going to go through this, and in any
given case there might be some difficulties to make this precise.

Example 3.9. Take F to be a local non-archimedean field. We may write

L2(F×) =

∫
R/(2πi log q)Z

⊕
χ

χ|.|it dt,

where χ runs over a set of characters of F× modulo twisting by |.|it. Take X◦ ⊂ X
to be Gm ⊂ Ga. Set f := 1X(OF ). Let ϕ ∈ C∞

c (F×), such as ϕ = 1O×
F
. Then

ϕχs =

∫
O×

F

χs(t) dt χs(x).

We have
⟨f, ϕχs

⟩ = L(s, χ).

3.5. Producing new Poisson summation formulae from old. We will discuss
two techniques, one of which has been exploited more than the other.

3.5.1. Restriction. Suppose given X ×G→ X together with a Poisson summation
formula. If we restrict to a subgroup H ⊂ G that still has open orbit, then we get
a Poisson summation formula still for X, but with respect to the action of H.

Example 3.10. Take a parabolic subgroup P =MN ≤ G. We can look at

X := P der\Gaff
,

with an action by Mab × G. The Poisson summation conjecture for X is known,
and is essentially the theory of Eisenstein series plus the spectral argument. (Some
of these ideas go back to Gelfand–Graev.) Here Mab is an abelian group, so you
can do a Mellin transform. By summing, one then gets an Eisenstein series. The
thing to note is that if we look at the integrals defined the other day Z(f, φ, s) = 0
for φ a cusp form on G(AF ), because if we try to integrate it against this space,
then every stabilizer will continue the unipotent radical of a parabolic subgroup,
hence will die. But Z(f, φ, s) may be nonzero if φ is a cusp form on H(AF ). This
will still have a functional equation because it inherits it from the case of G.

The above is just another way of talking about the Rankin–Selberg method.
Here’s a concrete example:

Example 3.11. Let P denote the Siegel parabolic subgroup of GSp6, i.e.,

P =

{(
zg ∗

g−⊺

)
: g ∈ GL3

}
.

Take H = G(SL2 × SL2 × SL2). Poisson conjeture for P der\GSp6 is known. This
gives rise to the triple product L-function L(s, π,⊗3) for π = π1 ⊗ π2 ⊗ π3, with πi
on GL2(AF ), introduced by Garrett [7] and developed further by Piatetski-Shapiro–
Rallis [13].
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3.5.2. Coinvariant. Take X × G → X and ι ⟳ G, as before. Assume that G =
G′ ⋉H and that ι|H = id. Suppose given a G′-equivariant map

I : S(X(F ))H(Fv) → C∞(Y ◦(Fv))

for some quasi-affine space Y ◦, with Y ◦ ×G′ → Y ◦ some other action. We assume
the Poisson summation conjecture for X. Often, one can prove∑

y∈Y ◦(F )

I(f)(y) =
∑

y∈Y ◦(F )

I(FX(f))(y).

This gives the Poisson summation formula for Y ×G′ → Y .
It is often reasonable to define

S(Y (AF )) := S(X(AF ))H(AF ).

You have to be a bit careful at the infinite places (you want to take some closure,
but let’s not worry about that). You can think of S(X(AF )) → S(Y (AF )) as a
harmonic analytic analogue of the map X → [X/H], where [X/H] is the stack that
appeared in yesterday’s exercise session.

Two examples:

Example 3.12. (Suggested to me by Aaron Slipper.) Take V = Gna to be a vector
space, and V × G ×H → V any action. Then we get a Schwartz space for V/H.
This seems a bit stupid, but you can create some fairly complicated vector spaces
V and get some interesting examples out of this.

Example 3.13. V = Gna×Gna andQn(x, y) := xy⊺, and Yn(R) := {v ∈ Vn(R) : Qn(v) = 0}
to be the zero locus. We have a Weil representation

ρ : SL2(AF )×OVn(AF )× S(Vn(AF ))→ S(Vn(AF )).

Let R := (ρ⊗ std∨)⊠ trivial : SL2(AF )⊗OVn(AF )×S(Vn+1(AF ))→ S(Vn+1(AF )),
where the action is extended from the subspace

S(Vn+1(AF )) ⊇ S(Vn(AF ))⊗ S(A2
F )

Then you get a map (see [8])

I : S(Vn+1(AF ))r(SL2(AF )) → C∞(Y ◦
n (AF )).

Note that Vn+1 is not spherical for On. It is not even homogeneous - the orthogonal
group does not act transitively on Vn. Nevertheless, after we take these coinvariants,
we obtain a summation formula for the GOn-spherical variety Yn. The Fourier
transform in this case just comes a Fourier transform on a big vector space.

There’s a more complicated example, sort of combining this example with that
of the Siegel parabolic, due to Getz–Liu [10].

3.5.3. Fiber bundle method. Assume given affine G-schemes Bi and equivariant
maps pi : X → Bi, fitting into a diagram

X

B1 B2

p1 p2

Assume given compatible Poisson summation formulae for the fibers of p1 and p2.
Then we get the Poisson summation formulae for X.
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Say this is a vector bundle, for example. Then you can just do Poisson summation
on all the vector spaces, and as long as the group action preserves everything, you
get a Poisson summation for the whole thing. (That’s kind of interesting – maybe
you don’t think about Poisson summation formulas in families.) But it’s more
interesting when you have two of these and can combine them. Let’s give a simple
example saying what you can get out of this, which is very rich.

Example 3.14. Take

X = (N\SL3)
aff
.

Let V = G3
a and let V ∨ := Hom(V,Ga). It’s not hard to verify that we can identify

X(R) = {(v, v∨) ∈ V (R)× V ∨(R) : v∨(v) = 0} .
So it’s another one of these cones. In this picture, we have our little diagram again:

X

V V ∨

p1 p2

One Fourier transform is given by

F1(f)(v, v
∨) =

∫
(V ∨)⊥(F )

f(v′, v∨)ψ

(
v ∧ v′

v∨

)
dv′

dv∨
,

being a bit liberal here with notation in order to make the equivariance properties
more transparent, e.g., in the argument of ψ, we think of v ∧ v′ as defining the
linear map

x 7→ v ∧ v′ ∧ x
e1 ∧ e2 ∧ e3

,

which is then a functional that we can then divide by v∨. For F2, you exchange
the roles of v and v∨ in the above expression. The operators F1 and F2 extend to
L2(X◦(F )) (there is an SL3-invariant measure on this), and generate a subgroup
of Aut(L2(X◦(F ))) isomorphic to S3. The latter is really the Weyl group W of a
maximal torus in SL3 – the two Fourier transforms correspond to simple reflections.
This tells us that we can define Fw for w ∈W . Let

SBK(X(Fv)) =
⊕
w∈W

Fw(S(X◦(Fv))).

This is a bit of a cheat, but it’s obviously invariant under all the Fourier transforms
now. We can think of this as living inside L2(X◦(F )).

We can adelize. We get Poisson summation formulae for X, with a whole non-
abelian group of Fourier transforms.

This example gives you hidden equivariance. You’ll notice that this space is an
example of the space from Example 3.13, just realized differently. You can ask,
what is the relationship between the two? Let P ⊂ SO6 be the stabilizer of an
isotropic vector. Then

P der\ SO6

aff
= (N\ SL3)

aff
.

The Schwartz spaces are the same. But the actions are different - on the left, there
is an action of Gm×SO6 (here Gm = P/P der), while on the right, we have an action
of G2

m × SL3 (here G2
m = T ≤ SL3 is the diagonal torus). Now, F1 and F2 do not

commute with the action of SO6, but the long Weyl element for SL3 defines the
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operator F1F2F1, which does commute with that action and defines the Fourier
transform arising naturally on the left.

The moral is that sometimes one can build equivariant Fourier transforms by
composing non-equivariant Fourier transforms.

3.6. Integral representations of triple product L-functions. Maybe in the
last five minutes, we’ll try to say something about what we do in the preprint [9].

Let r = (r1, r2, r3) be as before, and GLr =
∏3
i=1 GLri . Let

H(R) := {(h1, h2, h3) ∈ GLr(R) | deth1 = deth2 = deth3}.

We construct an affine Ψ-bundle

V◦ → X × Y

equipped with an action of GLr×GLr−2×H. We assume that f ∈ C∞(X◦(AF )×
Y ◦(AF ),Lψ). We can then form the theta function

θf (g, g
′, h) :=

∑
(x,y)∈X◦(F )×Y ◦(F )

R(g, g′, h)f(x, y).

For φ ∈ π on GLr(AF ), φ′ ∈ π′ on GLr−2(AF ) and s ∈ C and s ∈ C3, we define a
zeta integral

Z(f, φ, φ′, s, s) :=

∫
[GLr×GLr−2]×[H◦]

θf (g, g
′, h)φ(g)φ′(g′)ηs,s(g

′, h) dg dg′ dh,

with ηs,s a suitable quasi-character.

Theorem 3.15 (Getz–Gu–Hsu–Leslie). (1) This zeta integral is a holomor-
phic multiple of

L(s+ 1
2 , π

∨,⊗3)

3∏
i=1

L( 12 + s+
si − si+1 − si+2

ri − 2
, πi × π′

i)L(
1
2 + si, πi).

(2) The Poisson summation conjecture for X × Y implies the meromorphic
continuation of the above.

If you were looking at this with a critical eye and knew something about the
subject, you could just say, well, use the reductive monoid attached to the triple
product, for which the Poisson summation conjecture implies the meromorphic
continuation. So what have you really done? What we argue is that the space
X × Y is designed so that one can apply the techniques discussed earlier in this
lecture, e.g., the fiber bundle method, to get going. On the other hand, at least far
as the speaker can see, there is no known way of attacking the Poisson summation
conjecture directly on reductive monoids. The only real idea we have is to push it
to the trace formula and try to work there.

4. Chen Wan’s lectures

We’ll focus on the period aspect of the relative Langlands duality of Ben-Zvi–
Sakellaridis–Venkatesh. Recall from Chris’s talk that we saw something about inte-
gral representations of L-functions, which involves integrating automorphic forms
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ϕ on some larger space Y over some smaller space X. In nice cases, such integrals
represent L-functions:∫

X

(ϕ, automorphic form on Y ⊇ X) = L-function. (4.1)

We’ve seen in previous lectures that if you have this sort of integral representation
of L-functions, then you can use it to study the meromorphic continuation of L-
functions, or their special values. Such identities are thus very useful.

The examples might seem a bit ad hoc. Why should we integrate automorphic
forms on Y over X, for certain pairs (X,Y )? Is there some way to systematically
find, for a given L-function, which integrals represent them? Can we determine
systematically which L-functions are represented by some integral? The theory of
relative Langlands duality at least gives some explanation of this in some cases.
This is what we’ll talk about in our lectures.

Let’s first say the rough idea. If you look at this kind of integral (4.1), it’s kind
of an automorphic integral involving the quotient varietyM = Y/X (whatever this
means). Relative Langlands duality generalizes the classical Langlands correspon-

dence to varieties: one passes from M to some dual variety M̂, and the proposal
in relative Langlands duality is that

(automorphic integral onM) = (L-function associated to M̂).

Moreover, it’s a duality, which means that the same holds with the roles ofM and
M̂ reversed:

(automorphic integral on M̂) = (L-function associated toM).

Everything is general at this point – later, we’ll say precisely what it means. But
the idea is that at least in terms of periods integrals of automorphic forms, you have
certain nice Hamiltonian spaces and dualities between them so that the integrals
attached to one space are given by the L-functions attached to the other.

Let’s now set up some notation. We’ll first define the automorphic integrals
associated to this data, and if there’s time, the L-functions and the duality. Let
K be a global field, and A = AK the ring of adeles. Sometimes we’ll also work
over a local field F , (e.g., R,C,Qp, . . . ). Let G be a connected reductive group
defined over K. (If you’re not familiar with this language, you can just think of
the matrix groups that you’re familiar with, such as GLn, SLn, PGLn, SOn, Sp2n.)
Throughout these lectures, we’ll mostly focus on the groups that are split, i.e., that
have a maximal split torus.

The foundation of the Langlands program is based on the duality between these
reductive groups. For each such group G, we can write down its dual group Ĝ.
Reductive groups are parametrized by root data. For each root data, you can take

its dual root data, which then defines the dual group:

G Ĝ

GLn GLn
SLn PGLn

SO2n+1 Sp2n
SO2n SO2n

The Langlands conjecture says roughly that automorphic representations of G(A)
should correspond to Langlands parameters ϕ : LK → Ĝ(C) valued in the dual

group, and similalry with G and Ĝ swapped.



39

Definition 4.1. A BZSV quadruple for G is ∆ = (G,H, ι, ρH), where

(1) H ⊂ G is a split connected reductive subgroup,
(2) ι : SL2 → G is a homomorphism (possibly trivial) such that H commutes

with image(ι), so that we may extend to ι : H × SL2 → G.
(3) ρH is a symplectic representation of H, i.e., a homomorphism H → Sp(V ).

Define the automorphic quotient [G] := G(K)\G(A), and let ϕ : [G]→ C be an
automorphic form. The goal today is to define the period integral P∆(ϕ) associated
to a quadruple ∆ as above.

Let’s start with some easy special cases, before moving to the general case.

(1) Suppose ι = 1 (the trivial representation, C) and ρH = 0 (the zero-
dimensional symplectic representation {0}), thus ∆ = (G,H, 1, 0). Then

P∆(ϕ) :=

∫
[H]

ϕ(h) dh.

(In general, this does not converge and must be understood via truncation,
etc.)

(2) Suppose still that ι = 1 is trivial, but allow ρH to be general. Then

P∆(ϕ) :=

∫
[H]

ϕ(h) ·ΘρH (h) dh,

where ΘρH is a suitable theta function, whose definition depends also upon
the choice of a Schwartz function:
(a) It’s easiest to define in the special polarized case that ρH = τ ⊕ τ∨ for

some τ : H → GL(W ). In that case, after choosing φ ∈ S(W (A)), we
define

ΘρH (h) :=
∑

x∈W (F )

φ(τ(h)x).

To illustrate that case, we consider a couple examples:
(i) Suppose

∆ = (GLn ×GLn,GLn ×GLn, 1, std⊗ std⊕ (std⊗ std)∨)

Then, writing ϕ = ϕ1 ⊗ ϕ2 with each ϕi : [GLn] → C, we may
take W = Matn×n above (the space of n × n matrices), and we
obtain

P∆(ϕ) :=

∫
[GLn]×[GLn]

ϕ1(h1)ϕ2(h2)
∑

x∈Matn×n(F )

φ(h−1
1 xh2) dh1 dh2.

(ii) Take ∆ = (GLn × GLn,GLdiag
n , 1, std ⊕ std∨). Then, taking W

to be the n-dimensional vector space on which GLn acts by right
multiplication, we obtain

P∆(ϕ) :=

∫
[GLn]

ϕ1(h)ϕ2(h)
∑

x∈W (K)

φ(xh) dh,

which is the Rankin–Selberg integral for GLn ×GLn.
(b) In general, ρH : H → Sp(V ) induces the so-called Weil representation,

which may be realized on S(Y (A)) for a maximal isotropic subspace
Y of V . As you may know, the Weil representation is not on Sp(V ),
but on its double cover. So you can’t do it for an arbitrary symplectic
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representation – need a condition called “anomaly-free” that allows you
to resolve the ambiguity, but let’s not go into the details there. There
is anyway some condition under which we can split the Weil represen-
tation over H, giving a well-defined representation. The splitting is
not necessarily unique, and perhaps BZSV do not currently choose a
canonical splitting, but it’s expected that there is some natural split-
ting. Of course there is such a natural splitting in the polarized case.
In any event, one then sets, for h ∈ H(A) and φ ∈ S(Y (A)),

ΘρH (h) :=
∑

x∈Y (K)

ΩρH (h)φ(x).

(3) In the fully general case, we define

P∆(ϕ) :=

∫
[H]

Pι(ϕ)(h)ΘρH (h) dh. (4.2)

Here Pι is the Fourier coefficient of ϕ associated to ι, defined as follows. We
first recall that ι : SL2 → G. In particular, we can let L := CentG(image(ι(TSL2))),
with TSL2

≤ SL2 the diagonal maximal torus consisting of elements of the
form diag(t, t−1). Then L is a Levi subgroup of G. We also know, since
H commutes with the image of ι, that H is a subgroup of L. Now let
U := exp(u), where u is the positive weight space for Ad(ι(diag(t, t−1))).
We also define Ū := exp(ū), with u the negative weight space.

Example 4.2. Take G = GL2n and ι : SL2 → GL2n given by(
t

t−1

)
7→
(
tIn

t−1In

)
,(

1 1
1

)
7→
(
In In

In

)
,(

1
1 1

)
7→
(
In
In In

)
.

Then

L =

{(
a

b

)
: a, b ∈ GLn

}
, U =

{(
In ∗

In

)}
, Ū =

{(
In
∗ In

)}
.

If ι is even (i.e., all the weights of Ad(ι(diag(t, t−1))) are even), then the
Fourier coefficient is given by a very easy formula:

Pι(ϕ)(h) :=
∫
[U ]

ϕ(uh)ξ(u)−1 du, (4.3)

where ξ : [U ]→ C× is a character defined, for x ∈ u(A), by
ξ(exp(x)) := ψ

(
⟨x, ι ( 0 0

1 0 )⟩
)
,

where ψ : K\A→ C× is some fixed character.

Example 4.3. In the above example,

ξ

(
In x

In

)
= ψ

(〈(
0 x
0 0

)
,

(
0 0
1 0

)〉)
= ψ(trace(x)).

Exercise 4.1. Let G := GLn and ι : SL2 → GLn be ρn−1
sym . Then write

down the Fourier coefficient Pι(ϕ).
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If ι is not even, then we have a Weil representation Ωι of U(A) on
S(Z(A)), where Z is a maximal isotropic subspace of the weight 1 space of
Ad(ι(diag(t, t−1))). Then we build another theta kernal Θι(u) :=

∑
x∈Z(K) Ωι(u)φ(x),

where φ ∈ S(Z(A)). The period integral (depending upon φ) is then given
by integrating not just against a character as in (4.3), but against the theta
function:

Pι(ϕ) :=
∫
[U ]

ϕ(u)Θι(u) du. (4.4)

So, in the integral P∆(ϕ), there are possibly two different choices of
Schwartz functions: one in the theta kernel in (4.2), and another in the
theta kernel in (4.4). But in some special cases (ι trivial or even), we don’t
need these.

Example 4.4. Take ∆ = (G,H, ι, ρH), where

G = GL2n,

H = GLn =

{(
h

h

)
| h ∈ GLn

}
,

ρH = 0 and

ι :

(
t

t−1

)
7→
(
tIn

t−1In

)
,

(
1 1

1

)
7→
(
In In

In

)
.

Then

P∆(ϕ) =

∫
[GLn]/GL1(A)

∫
[Matn×n]

ϕ

((
In x

In

)(
h

h

))
ψ(trace(x))−1 dx dh,

which is relevant for the Shalika model.

Exercise 4.2. For G = GL6, find ∆ for which P∆(ϕ) is given by∫
[GL2]

∫
[Mat32×2]

ϕ

I2 X Z
I2 Y

I2

h h
h

ψ(trace(X + Y ))−1 dX dY dZ dh.

Example 4.5. ι : SL2 → GL3 given by h 7→ diag(h, 1) is not even, because we get
odd weight spaces for diag(t, t−1, 1) acting via the adjoint representation for GL3.

Continuing, let G be be a split connected reductive group over K. Recall that a
BZSV quadruple is ∆ = (G,H, ι, ρH), where H ⊂ G is a split connected reductive
group, ι : SL2 → G has image commuting with H, and ρH : H → Sp(V ) is a
symplectic representation. Then, given ϕ : [G]→ C, we defined

P∆(ϕ) :=

∫
[H]

Pι(ϕ)(h)ΘρH (h) dh.

We recall also that there were Schwartz functions entering into this definition, but
we omit this from our notation for simplicity.

There will be some conditions that one can impose on these quadruples, called
hyperspherical and anomaly-free. Under these conditions, relative Langlands duality
is a conjecture saying that there should be a duality between such quadruples

∆ = (G,H, ι, ρH)↔ ∆̂ = (Ĝ, Ĥ ′, ι̂′, ρĤ′). (4.5)
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Remark 4.6. In general, for the duality, with ∆ dual to ∆̂, one is a quadruple for
G, while the other is a quadruple for Ĝ. But the other three data should be viewed
as a whole, i.e., (H, ι, ρH) is dual to (Ĥ ′, ι̂′, ρĤ′), but the duality is not defined at
the level of individual entries in these tuples.

There are then several conjectures that one can associate to this duality. In
my talk, we will focus on the period integral conjecture of BZSV. If you want to
summarize it in one line, it says that if you have one quadruple that is dual to
another one, then the period for ∆ should be roughly equal to the L-function for
∆̂, and vice-versa:

P∆ = L∆̂, P∆̂ = L∆.

So far for this whole picture, we only did one thing, which is we defined the period.
We next need to define the L-functions, and then explain which quadruples should
admit such a duality. (One should not expect a duality for arbitrary quadruples.)

We’ll next define define the L-functions. We recall that, because the image of ι
commutes withH, the map ι extends to ι : H×SL2 → G. Using this homomorphism
and the adjoint action, we get an action of H × SL2 on Lie(G). We may thus
decompose

g =
⊕
k≥0

ρk ⊗ Symk,

where the ρk are representations of H. Now the adjoint representation of G on
its whole Lie algebra is an orthogonal representation (because it fixes the Killing

form), but if you look at the symmetric powers Symk of SL2, when k is even, it is
an orthogonal representation, while when k is odd, is a symplectic representation.
Since the tensor should be of orthogonal type, we also know that ρk is orthogonal
(resp. symplectic) when k is even (resp. odd).

We can do the same thing for the dual side of (4.5), i.e., using ι̂′ : Ĥ ′×SL2 → G,
we get

ĝ =
⊕
k≥0

ρ̂K ⊗ Symk,

with ρ̂K a representation of Ĥ ′.
We can now state the period integral conjecture of BZSV.

(1) Let π be a discrete automorphic representation of G(A). Let ν : π →
L2([G]). Then P∆(ϕ) ̸= 0 for some ϕ ∈ image(ν) only if the Arthur param-
eter of π factors through

ι̂′ : Ĥ ′(C)× SL2(C)→ Ĝ(C).

To be a bit more precise, recall that the Arthur parameter for π is (con-

jecturally) a map ωπ : LK × SL2(C)→ Ĝ(C), where LK is the conjectural
Langlands group. The meaning of “factors through” is then that there ex-
ists an Arthur parameter ωσ : LK × SL2(C) → Ĥ ′(C) (of an automorphic
representation σ of H ′(A)) such that

ωπ = ι̂′ ◦ (ωσ × idSL2
),
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fitting into a commutative diagram

LK × SL2(C) Ĝ(C)

Ĥ ′(C)× SL2(C)

ωπ

ωσ
ι̂′

The content of “factors through” is thus that π is the Langlands functorial
transfer of an automorphic representation σ of H ′(A). Assume that this is
the case, and assume that σ is tempered (i.e., that ωσ|SL2(C) ≡ 1). Then
we can choose ν such that

|P∆(ϕ)|2
.
=
L( 12 , σ, ρĤ′)

∏
k≥0 L(

k
2 + 1, σ, ρ̂K)

L(1, σ,Ad)2
.

In other words, on the dual side, we get two things from Ĥ ′ and ι̂′. It
first gives you functoriality, i.e., the period is nonzero only if it factors
through ι̂′. It also gives you the grading into k’s and the second factor in
the numerator. Finally, the symplectic representation gives you L-values
at 1/2.

The equal sign is dotted because there are several other factors, e.g.
volume terms, quantities depending upon the sizes of Arthur packets, etc.

(2) Conversely, P∆̂ is “equal” to L∆.

Two special cases:

(1) ∆̂ = (Ĝ, Ĥ ′, 1, 0). Then the conjecture says that P∆(ϕ) detects the func-
toriality from H ′(A) to G(A). For instance, suppose (as discussed ear-
lier) ∆ = (GL2n,GLn, (2

n), 0), where GLn is embedded like diag(h, h),

and (2n) means we take ι : diag(t, t−1) 7→ diag(tIn, t
−1In). Then ∆̂ =

(GL2n,Sp2n, 1, 0). Thus P∆ ̸= 0 only if ϕ comes from the functorial lifting
from SO2n+1(A) to GL2n(A).

(2) Let’s consider next the case where ∆̂ = (Ĝ, Ĝ, 1, ρ̂Ĝ), i.e., we only have a
symplectic representation (but no SL2 representation). Then the conditions
simplify and what we get is that

|P∆(ϕ)|2
.
=
L( 12 , π, ρ̂Ĝ)

L(1, π,Ad)
.

In other words, in this case, the period corresponds to a special value of
L-functions.

The general case will be some combination of these two cases: some detection of
functoriality, and some special values.

Exercise 4.3. Check this for ∆ = (GLn × GLn,GLn × GLn, 1, (std⊗ std)∨ ⊕
(std⊗ std)) and ∆̂ = (GLn ×GLn,GLn, 1, std⊕ std∨), where it corresponds to the
results of Godement–Jacquet and Rankin–Selberg.

This is now the rough statement of the period conjecture, but we still haven’t
said exactly what things are dual to each other, and which categories we’re working
with (i.e., which quadruples). Let’s now discuss that point. We continue to fix

our G and Ĝ. The relative Langlands duality goes between smooth, anomaly-free,
hyperspherical Hamiltonian spacesM↔ M̂ forG and Ĝ, respectively. Let’s explain
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how to attach, to a quadruple ∆ = (G,H, ι, ρH), a G-Hamiltonian spaceM∆. The
association is easy to understand in special cases:

(1) ∆ = (G,H, 1, 0). ThenM∆ = T ∗(G/H) is just the cotangent bundle.
(2) ∆ = (G,G, 1, ρG), where ρG : G→ Sp(V ). ThenM∆ = V .
(3) Combining these two cases together, take ∆ = (G,H, 1, ρH), where ρH :

H → Sp(V ). Then M∆ = (V ×h∗ g∗) ×H G. Here V ×h∗ g∗ is the fiber
product, where V → h∗ is the moment map (coming from the symplectic
action of H). (This is sometimes called “symplectic induction”.)

In general, recall that ι gives L = CentG(ι(diag(t, t
−1))) and U = exp(u), where u

is the positive weight space for Ad(ι(diag(t, t−1))). Let u+ ⊆ u denote the weight
≥ 2 space. Then u/u+ is the weight one space. (We remark that u/u+ = {0} if
and only if ι is even in the terminology introduced earlier.) The quotient u/u+ is a
symplectic vector space.

M∆ =
(
(V × u/u+)×(h+u)∗ g∗

)
×HU G.

We have u/u+ → u∗ via x 7→ κ(x) + κf , where κ : u/u+ → (u/u+)
∗ comes

from the symplectic pairing and the shift κf ∈ u∗ is given by Y 7→ ⟨ι ( 0 0
1 0 ) , Y ⟩.

The hyperspherical condition involves several requirements. Many concern avoiding
the cases of covering groups, where stabilizers need not be connected. The main
requirement is coisotropy, which says that the space K(M)G of G-invariant rational
functions onM is commutative with respect to the Poisson bracket.

There is a structure theorem of BZSV that says that every smooth hyperspher-
ical Hamiltonian G-space M arises as M∆ for some unique BZSV quadruple ∆.
Tomorrow, we’ll explain how in terms of the quadruples to see the coisotropy con-
ditions; we will also explain the “anomaly-free” condition. (Note that so far we
could take any subgroup H in such a quadruple, which would be too powerful; the
hyperspherical condition says roughly that H is a spherical subgroup in the special
case (1), while in the special case (2), it says that the symplectic representation
should be multiplicity-free in a certain sense to be discussed tomorrow.)

Remark 4.7. For a reductive group over a local field, local Langlands classifies
isomorphism classes of irreducible representations in terms of conjugacy classes of
maps from W ′

F to Ĝ. (For a compact connected Lie group, there is a simpler
bijection involving S1 in place of W ′

F .) In this setting, there is a Hamiltonian G-

space M and a Hamiltonian Ĝ-space M̂. There is something like quantization.
Formally, M = T ∗X and M̂ = T ∗X̂. There are actions G ⟳ L2(X) and Ĝ ⟳
L2(X̂). For instance, if M = T ∗(G/H), then X = G/H. It makes sense to
consider the subset

IrrX(G(F )) =
{
π ∈ Irr(G(F )) appearing in L2(X)

}
.

This should correspond to{
ϕ :W ′

F → Ĝ(C) : M̂image(ϕ) ̸= ∅
}
.

Continuing, let’s first recall what we’ve been doing in the past few days, in the
reverse order. We start with a split reductive group G, with dual group Ĝ. We said
at the end of yesterday that the relative Langlands duality is a duality, conjectured
by BZSV, between certain Hamiltonian spaces M and M̂ for G and Ĝ satisfying
certain conditions: anomaly-free and hyperspherical. The structure theorem of
BZSV states that any hypersphericalM is of the courseM =M∆ for some unique
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BZSV quadruple ∆ = (G,H, ι, ρH), where we recall that H ⊂ G is a reductive
subgroup, ι : SL2 → G commutes with H, and ρH : H → Sp(V ).

Definition 4.8. We say that a quadruple ∆ is anomaly-free hyperspherical if the
associated Hamiltonian spaceM∆ is.

How does one see these conditions in terms of the quadruples? Recall that,
given ∆ = (G,H, ι, ρH), from ι, we get L := CentG(image(ι(diag(t, t−1)))) and
U = exp(u), with u the positive weight space. We also let u+ denote the weight
≥ 2 space, so that u/u+ is actually the weight 1 space; it is also a symplectic
representation of H. We denote this representation by ρι. From this quadruple, we
define another quadruple, but with trivial ι, by

∆red := (L,H, 1, ρH,ι), (4.6)

where ρH,ι = ρH ⊕ ρι. The reason we write “red” for “reductive” is that the ι part
in the period integral gives some unipotent period, so if you want a period integral
over a reductive subgroup, that’s equivalent to saying that ι is trivial. We say that
∆ is reductive if ι = 1, or equivalently, if ∆ = ∆red.

Definition 4.9. We say that ∆ is anomaly-free if this symplectic representation
ρH,ι is an anomaly-free symplectic representation of H, in the sense defined below.

Definition 4.10. Let π : H → Sp(V ) be a symplectic representation. Recall that
H is split. Let T ⊂ H denote the maximal split torus. We may then restrict our
representation to T . Since the representation is symplectic, its restriction to T
will be self-dual and even-dimensional, so we can decompose π|T = τ ⊕ τ∨ (non-
uniquely, although the definition to follow does not depend upon this choice). We
say that π is anomaly-free if there exists χ : T → GL1 and η : H → GL1 such that
det(τ) = χ2 · η|T .

This means roughly that if you take half the weights of the π, you get a square in
the weight lattice. From the point of view of period integrals, recall that we really
needed a Weil representation, but this is usually not defined on Sp(V ), but rather

on its metaplectic cover S̃p(V )→ Sp(V ); this anomaly-free condition ensures that
the image of the representation has a splitting inside this cover. There are several
places where this condition becomes natural.

Exercise 4.4. Check that Definition 4.10 is independent of the choice of the de-
composition of π|T .

Remark 4.11. From the above definition, one can easily see that ∆ is anomaly-free
if and only if ∆red is. Indeed, what really matters is the symplectic representation.

Now let’s discuss how to see the coisotropy condition. Recall thatM is coisotropic
if the ring K(M)G of G-invariant rational functions is commutative with respect
to the Poisson bracket. What condition does this place on the quadruples? To see
this, we may reduce to the case that ∆ is reductive.

Proposition 4.12. (See [1, §3].) For ∆ = ∆red, we have that M∆ is coisotropic
if and only if the following conditions hold:

(1) H ⊂ L is a spherical subgroup.
(2) The restricted symplectic representation ρH,ι|H0

is a multiplicity-free sym-
plectic representation, where H0 is the stabilizer of a generic orbit for
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H ⟳ h⊥, with h⊥ the orthogonal complement of h inside l = Lie(L). Here
“multiplicity-free” is similar to this coisotropy condition; it means basically
that K(V )H is commutative with respect to the Poisson bracket. Such rep-
resentations were completely classified by Knop and Losev.

We can now describe the duality ∆ = (G,H, ι, ρH)←→ ∆̂ = (Ĝ, Ĥ ′, ι̂′, ρĤ′). We
have focused here on the period conjectures, but there are also geometric and L2-
conjectures, and it is expected that those finer conjectures (especially the geometric
ones) should classify this duality. What is not available at the moment is, if we’re

given a ∆, can you write down ∆̂? This is apparently missing at the moment;
there’s no clear algorithm in general. (By contrast, it’s clear and algorithmic how

to pass from a group G to its dual group Ĝ in terms of root data.) But there are
algorithms for computing the duality in some special cases.

First, BZSV explain how we can reduce the computation of the duality to the
reductive case. We want to go from ∆ to ∆̂, and we know how to go from ∆ to
∆red, as in (4.6). What BZSV propose is to use

∆̂red = (L̂, Ĥ ′
L, ι̂

′
L, ρĤ′

L
)

(this is the dual of ∆red, typically not the same as the reductive version ∆̂red of the

dual ∆̂) to compute ∆̂, as follows:

(i) ι̂′ = ι̂′L.

(ii) Ĥ ′ is generated by Ĥ ′
L and{
image(ια) | α ∈ ∆Ĝ = ∆L̂

}
,

where ∆··· denotes simple roots.
(iii) Write ρĤ′

L
=
⊕

i τi,L, where the τi,L are irreducible representations of highest

weight ωi,L. Then take ρĤ′ =
⊕

i τi, where the τi are irreducible representa-
tions of highest weight ωi such that ωi and ωi,L belongs to the same orbit of
the Weyl group.

Example 4.13 (Shalika model). (Recall Example 4.4.) ∆ = (GL2n,GLn, (2
n), 0).

Then

∆red = (GLn ×GLn,GLn, 1, 0)→ ∆̂red = (GLn ×GLn,GLn, 1, 0),

where GLn is a sort of diagonal GLn. Pass from this to ∆̂, we get

∆̂ = (GL2n,Sp2n, 1, 0).

Example 4.14. (Recall Exercise 4.2.) ∆ = (GL6,GL2, (3
2), 0). Then

∆red = (GL3
2,GL2, 1, 0)→ ∆̂red = (GL3

2, S(GL3
2), 1, std

⊗3).

We obtain

∆̂ = (GL6,SL6, 1,∧3).
In deriving this, we look atdiag(t1, t2) GL2

diag(t3, t4)
GL2

 ⊂ GL6,

and ωL = t1t3t5 =⇒ ω = t1t2t3.
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This is the first algorithm we have – you can reduce to the reductive case. It
remains to consider the reductive case, where ∆ = (G,H, 1, ρH). In this case, there
are two known algorithms.

First, the polarized case ρH = τ ⊕ τ∨. This includes, for instance, the case of
spherical varieties, where ∆ = (G,H, 1, 0). It’s not too far away from that case –
one can often just replace H by a generic stabilizer for the action of τ . BZSV give
a generic formula for computing the dual.

• Ĥ ′, ι are given by the dual group of spherical varieties (Gaitsgory–Nadler,
Sakellaridis–Venkatesh, Knop–Schalke).
• ρĤ was constructed (via unramified calculation) by Sakellaridis [14].

Another known case is the vector space case, where H = G but ρH can be
anything. We then give a construction based on Knop’s construction. We give a
way to describe Ĥ ′ and ι̂′, but for ρĤ′ , we use an ad hoc method based on looking
at the finite tables of examples. See [12].

5. Raphael Beuzart-Plessis’s lectures

Introduction to Relative Trace Formulas (RTF)

5.1. RTF in general. Let K be a global field. Let G be a connected reductive
group overK. Let A(G) denote the space of automorphic forms on the automorphic
quotient [G] := G(K)\G(AK).

5.1.1. Periods. Let H ⊂ G be an algebraic group. Let χ : [H]→ C× be a character.
By the (H,χ)-period, we mean the functional

PH,χ : A(G)→ C

φ 7→
∫
[H]

φ(h)χ(h) dh.

Remark 5.1. The integral often diverges. We’ll explain in some examples how
one might regularize them. It’s usually convergent if the automorphic form φ is
cuspidal. (Usually, but not always – there might be issues with the center, or if one
takes H to be the Borel subgroup of G = GL2, then it never converges.)

Remark 5.2. We can replace χ by some “small” automorphic representation of H
(e.g., “degenerate” Eisenstein series).

Emprical fact: PH,χ is often related to L-functions and functoriality.

Example 5.3. (a) (Hecke) G = GL2 ⊃ ( ∗ 1 ) := Gm. For φ ∈ π ⊂ Acusp(G),

PH,|.|s(φ) ∼ L( 12 + s, π).

(b) (Rankin–Selberg)G = GL2×GL2 ⊃ H = GLdiag
2 ,

∫
[H/Z]

φ1(h)φ2(h)E(h, f, s) dh ∼
L(s, π1×π2), where φi ∈ πi ⊂ Acusp(GL2) and E is a suitable Eisenstein series.

(c) (Harder–Langlands–Rapoport) Let L/K be a quadratic extension, G = GL2,L,
H = GL2,K . Take π ⊂ Acusp(GL2,K) and χ : A×

K/K
× → C× such that

ωπ = χ−1 ◦NL/K . Then the following are equivalent:
• There exists φ ∈ π with PH,χ(φ) ̸= 0.
• There exists σ ⊂ Acusp(GL2,K) such that π is the base change σL and
ωσ = χ−1.
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(d) (Jacquet–Shalika) Take

G := GL2n ⊇ H =

{(
g

g

)(
1 X

1

)
| g ∈ GLn, X ∈ Matn

}
.

Let

χ : [H]→ C×,(
g

g

)(
1 X

1

)
7→ ψ(trace(X)).

For π ⊂ Acusp(GL2n/Z), the following are equivalent:
• PH,χ |π is not identically zero.
• π is a functorial lift from SO2n+1.

5.1.2. Theta series. Take X := H\G. Define ΘX : C∞
c (X(A))→ C∞([G]) by

f 7→ ΘXf (g) :=
∑

x∈X(K)

f(xg).

For φ ∈ A(G), define

PX(φ, f) :=

∫
[G]

φ(g)ΘXf (g) dg.

Provided that f is supported inside H(A)\G(A) (in general, a proper subset of
X(A), with the obstruction measured by Galois cohomology), we have

PX(φ, f) =

∫
H(A)\G(A)

PH(R(x)φ)f(x) dx.

In particular, writing ΘXf,π for the orthogonal projection of ΘXf to π, we see that

PH |π ̸≡ 0 ⇐⇒ ΘXf,π ̸≡ 0.

This makes sense for any (smooth) G-variety X, not necessarily homogeneous. Put
this way, it contains many basic examples.

Example 5.4. (a) Take X = Ga ⟲ Gm. Then an automorphic form is just a
Hecke character χ, and by Tate,∫ reg

[GL1]

χ(t)ΘXf (t) dt ∼ L( 12 , χ).

(We’ll talk about the regularization later.)
(b) Take X = Matn ⟲ G = GLn×GLn. Take two cusps forms in the same cuspidal

automorphic representation, say φ1, φ2 ∈ π ⊂ Acusp(GLn). Then∫ reg

[G]

φ1(g)φ2(g)Θ
X
f (g) dg ∼ L

(
1−n
2 , π

)
.

5.1.3. RTF formally. Before defining an RTF, we need to talk about an automor-
phic kernel. Take f ∈ C∞

c (G(A)). It acts on the space of automorphic forms by the
right convolution R(f). This action is given by a kernel, which is like a continuous
matrix, given by

(R(f)φ) (x) :=

∫
[G]

Kf (x, y)φ(y) dy.
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The kernel has Kf (x, y) two different expansions. One, which we call the geometric
expansion, is as a sum over rational points over the group:∑

γ∈G(K)

f(x−1γy).

The other, which is a kind of spectral expansion, is given by∑
φ∈Acusp(G)

O.N.B.

(
R(f)φ

)
(x)φ(y) + · · ·

where · · · denotes the Eisenstein contribution.
We now consider the following setting. Let H1 ⊂ G ⊃ H2 be two subgroups. Let

χi : [Hi]→ C×. Define X to be, informally, the quotient

“H1, χ1\G/H2, χ2”.

More precisely:

Definition 5.5. For f ∈ C∞
c (G(A)),

RTFX(f) :=

∫
[H1]×[H2]

Kf (h1, h2)χ1(h1)χ2(h2) dh1 dh2.

Why is this related to period integrals? Well, one way to compute the RTF is
via the spectral expansion

RTFX(f) :=
∑

φ∈Acusp(G)

PH1,χ1
(R(f)φ)PH2,χ2

(φ) + · · · .

Another is the geometric expansion

RTFX(f) =
∑

γ∈H1(K)\G(K)/H2(K)

vol ([(H1 ×H2)γ ]) Orbγ(f),

where

Orbγ(f) :=

∫
(H1×H2)γ(A)\(H1×H2)(A)

H(h−1
1 γh2)χ1(h1)χ2(h2) dh1 dh2.

Here (H1 ×H2)γ is the stabilizer with respect to the action γ · (h1, h2) = h−1
1 γh2.

Remark 5.6. Two sources of divergence on the geometric side:

• the volumes can be infinite, and
• the orbital integrals can diverge.

However, one advantage of these distributions over the original ones is that they
are factorizable, being now taken over an adelic space. At least formally,

Orbγ(f) =
∏
v

Orbγ(fv) for f =
∏

fv,

where Orbγ(fv) is a local orbital integral.

Remark 5.7. There are a few different RTF’s one can see here:

• G ⟲ H1 ×H2,
• H1\G ⟲ H2,
• H1\G×H2\G ⟲ G.

¡++¿
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5.1.4. RTF and theta series. Assume for simplicity that χ1 = χ2 = 1.
There is one first obvious relation between RTF and theta series. Note that

Kf = ΘGf for G ⟲ G×G.
Thus

RTFX(f) =

∫
[H1×H2]

ΘGf =

∫
[H2]

ΘH2\G
φ ,

where φ(x) =
∫
H1(A) f(h1x) dh1, which lies in C∞

c (H1(A)\G(A)). We can also write

the above as the Petersson norm〈
ΘH1\G
φ1

,ΘH2\G
φ2

〉
Pet

,

where for f = f1 ∗ f∨2 with f1, f2 ∈ C∞
c (G(A)), we set

φi(x) :=

∫
Hi(A)

fi(hix) dhi.

More generally, for X ⟲ G, we can consider the distributions

RTFX/G(f) :=

∫
[G]

ΘXf for f ∈ C∞
c (X(A)).

You can write, in a similar way, a geometric expansion of this in terms of G(K)
on X(K). Let’s try to make sense of the convergence. These ΘXf are not arbitrary
functions – they have a very special behavior. Here’s a fact that we’ll write in vague
terms, and then give one example.

Fact 5.8. ΘXf is “asymptotically finite”, i.e., is asymptotic to eigenfunctions with

respect to the action of some tori (where we pluralize “torus” because the precise
one depends upon in which direction you are tending to infinity). Informally, by
declaring the integrals of such asymptotics to be zero, you can define regularized
integrals. Provided that¡++¿ the asymptotics are nontrivial, there is a canonical
way to regularize RTFX/G.

Example 5.9. Take G = Gm. Let χ0, χ∞ : [Gm] → C×. Define Fχ0,χ∞([Gm]) to
be the set of all f ∈ C∞([Gm]) such that there are c0 = c0(f) and c∞ = c∞(f) ∈ C
such that

|f(t)− c∞χ∞(t)| ≪N |t|−N for |t| ≥ 1,

|f(t)− c∞χ∞(t)| ≪N |t|N for |t| ≤ 1.

We have a short exact sequence of A×-representations

0→ S([Gm])→ Fχ0,χ∞ → Cχ0
⊕ Cχ∞ → 0,

where S([Gm]) consists in particular of functions that are rapidly decaying. The
map is given by f 7→ (c0(f), c∞(f)).

(a) If χ0 ̸= 1 ̸= χ∞, then there is a unique functional∫ reg

[Gm]

: Fχ0,χ∞ → C

that is A×-invariant and such that∫ reg

[Gm]

f =

∫
[Gm]

f(t) dt for f ∈ S([Gm]).

(b) Take X1 = Ga ⟲ Gm. Then, for all f ∈ C∞
c (A), we have ΘX1

f ∈ F|.|−1,1.
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(c) Define X2 = G2
a ⟲ Gm by t · (x, y) := (tx, t−1y). Then, for all f ∈ C∞

c (A2), we

have ΘX2

f := F|.|−1,|.|.

(d) Take Gm = A = ( ∗ 1 ) ⊂ PGL2, then for all f ∈ C∞
c (X3(A)), we have ΘX3

f ∈
F|.|−1,|.|.

5.2. Waldspurger theorem via Jacquet’s comparison of RTF.

5.2.1. Reminder on Hecke periods. Set

G := PGL2/K ⊃ A :=

(
∗

1

)
= Gm.

Let’s also fix an idele class character χ : [Gm] → C×. Yesterday we formulated
a relation between the Hecke period and the Hecke L-function. Let’s recall that,
being a little more precise. Let φ ∈ π ⊂ Acusp(G) be a cusp form, living in some
cuspidal automorphic representation. Then if you take the automorphic period
over A twisted by χ of φ, you get the standard L-function of π twisted by χ,
although it’s only an approximation: you need to add some local factors involving
the local points of your torus, the local components of your character, and the local
component of not exactly φ, but rather its Whittaker function. This yields

PA,χ|.|s(φ) = L( 12 + s, π × χ)
∏
v

P♭Av,χv,|.|sv (Wv), (5.1)

where the Whittaker function is defined by

Wφ(g) =

∫
A
φ

((
1 x
0 1

)
g

)
ψ(x) dx =

∏
v

Wv,

with the factorization was explained in Chris’s lectures, and where the local periods
are defined in the obvious way, by integrating the Whittaker function against the
character:

PAv,χv,|.|sv (Wv) :=

∫
F×

v

Wv

(
a

1

)
χv(a)|a|sv da,

which we normalize further by dividing by the local factor of the global L-function:

P♭Av,χv,|.|sv (Wv) :=
PAv,χv,|.|sv (Wv)

L( 12 + s, πv × χv)
.

Specialize to s = 0. It turns out that all local periods are nonzero, so we obtain

L( 12 , π × χ) ̸= 0 ⇐⇒ there exists φ ∈ π, PA,χ(φ) ̸= 0.

5.2.2. Waldspurger’s formula. Let L/K be a separable quadratic extension of K.
We can then define a torus T := L×/K× ⊂ G := AutK(L)/K×. We can define an
automorphic character χ : [T ]→ C×. Let us remark that [T ] can also be written as
L×\A×

L/A
×
K ; thus, χ gives in particular an idele class character for L. We then have

all the ingredients needed to formulate a precise version of Waldspurger’s formula.
It’s essentially an analogue of the Hecke formula (5.1). Let φ ∈ π ⊂ Acusp(G).
Then

|PT,χ(φ)|2 = L( 12 , πL × χ)
∏

(local periods),

where πL ⊂ A(GL) is the base change lift of π (a particular case of Langlands
functoriality, shown to exist by Langlands in this case). That’s the shape of the
Waldspurger formula.
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Now you can ask the same question: can we deduce from this formula a criterion
for the nonvanishing of the central L-value? The problem here is that the local
periods can be identically zero! The way to work around this problem is to work
with a family of groups, called pure inner forms. Let’s explain quickly what are
these groups.

5.2.3. Quaternion algebras. Let k be an arbitrary field, with char(k) ̸= 2. Let’s
take as a definition that a pure inner form of G := PGL2 is a group of the form
GB := B×/k×, where B is a quaternion algebra over k.

Recall that a quaternion algebra over k is an algebra B/k whose base change to
the algebraic closure is the space of 2 × 2 matrices, i.e., B ⊗k ksep ∼= M2(k

sep). If
B ∼= M2(k) (already over k), then we say that B is split. There’s a very simple
classification of quaternion algebras, using the following construction. Over the
algebraic closure, there’s a particular quadratic form on the 2 × 2 matrices, given
by the determinant: det : M2(k

sep) → ksep. Being unique, it descends to N :
B → k, called the reduced norm. This is also a quadratic form. In particular, you
can consider the orthogonal of k with respect to the associated bilinear form, say
B0 := k⊥. Then we obtain{

quaternion algebras over k
up to isomorphism

}
←→

 rank 3 quadratic forms
of discriminant one,
up to equivalence


B 7−→ N |B0

Moreover, GB ∼= SO(q).
The classification proceeds as follows.

• If k is a local field other than C, then there are two isomorphism classes of
quaternion algebras: M2(k) = B+ (called split), and some other quaternion
algebra B−.
• Suppose k = K is global. Then:

– Two quaternion algebras B and B′ over K are isomorphic if and only
if their completions Bv := B ⊗K kv and B′

v are isomorphic for all v.
– For a family (Bv)v of local quaternion algebras, there exists a quater-

nion algebra B/K with Bv ∼= Bv for all places v if and only if
∗ Bv is split for almost all v, and
∗
∏
v ε(Bv) = 1, where ε(Bv) is defined to be +1 if Bv is split and
−1 otherwise.

We next recall the Jacquet–Langlands correspondence.

• For k = F local, there exists

JL : Irr(GB(F )) ↪→ Irr(G(F ))

that is injective and is characterized by some character identities. Moreover,
if B is split, then JL is just the identity.
• For k ∈ K global, there exists

JL :

{
cuspidal automorphic

representations πB ⊂ Acusp(G
B)

}
↪→
{

cuspidal automorphic
representations π ⊂ Acusp(G)

}
such that JL(πB)v = JL(πB,v) for all places v. In particular, πB,v ∼= πv for
all places v such that Bv is split.
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That’s all we wanted to say about quaternion algebras and the Jacquet–Langlands
correspondence. Let’s now go back to finding a way to go from the Waldspurger
formula to a criterion for the nonvanishing of the central L-value.

5.2.4. Non-vanishing. Return to the previous setting. Let L/K be a quadratic
extension of global fields, so that we have

T = L×/K× ⊂ G := PGL2, χ : [T ]→ C×

as before. Let B be a quaternion algebra such that L ⊂ B. Then we obtain an
embedding

T = L×/K× ⊂ GB → B×/K×.

It turns out that in this situation also, there is a Waldspurger formula for the period
of cusp forms on GB over T . When you combine all these formulas, you can deduce
the following nonvanishing result:

Theorem 5.10 (Waldspurger). Let π ⊂ Acusp(G). Then the following are equiva-
lent:

(i) L( 12 , πL × χ) ̸= 0.

(ii) There exists a quaternion algebra B over K with L ⊂ B and πB ⊂ Acusp(G
B)

with JL(πB) = π with PT,χ|πB ̸= 0.

That’s the statement. We’ll now aim to explain how Jacquet was able to reprove
this using a comparison of RTF.

5.2.5. RTF approach. For simplicity, we will only consider the case where χ = 1 is
trivial. This simplifies in particular the base change L-function, which is then just
L(s, πL) = L(s, π)L(s, π × η), where

η : K×\A×
K/NL/K(A×

L )
≃−→ {±1}

is the quadratic character of the idele class group of K that is associated to the
extension L/K by class field theory. In particular,

L( 12 , π) ̸= 0 ⇐⇒ PA|π ̸≡ 0

and
L( 12 , π × η) ̸= 0 ⇐⇒ PA,η|π ̸≡ 0.

Jacquet’s idea: prove Waldspurger’s theorem using a comparison of RTF. On the
one side, we’ll have the RTF associated to

T\GB/T. (5.2)

We’d like to compare it to the RTF that sees these two Hecke periods, ie.. that
which is associated, at least formally, to the double quotient

A\G/A, η. (5.3)

One remark before we proceed. We have already solved yesterday all the con-
vergence issues. In the two relative trace formulas that we want to consider, there
is a precise way to form the integral defining the RTF. For the first case (5.2), we
are taking periods over [T ], which is compact, so the RTF is already convergent.
This is not the case for (5.3), but it can be regularized as in yesterday’s talk. We
are now starting from something that is really defined. We want to compare these
two relative trace formulas. We do so by trying to match the geometric expansions.
Let’s describe those.



54

5.2.6. Geometric expansions.

(a)

RTFT\GB/T (f) =
∑

δ∈T (K)\GB(K)/T (K)

vol([(T × T )δ]) Orbγ(f).

Exercise 5.1. We need to parametrize the orbits. Define

L−
B := L⊥ ⊂ B = L⊕ L−

B .

We can define a map

ν : GB → P1 − {1}

δ = δ+ + δ− 7→ −N(δ−)

N(δ+)
.

(Check why we miss 1!) This induces an injection

T (K)\GB(K)/T (K)→ P1(K) \ {1}

with image (−N(L−
B) \ {1}) ∪ {∞}.

Definition 5.11. We say that δ ∈ GB is regular semisimple if ν(δ) ̸= 0 or ∞.

We denote by

GBrs ⊂ GB

the subset consisting of regular semisimple elements.

Exercise 5.2.

⊔B:quat. alg /K
L⊂B

ν(GrsB(K)) = P1(K).

Notation 5.12. For x ∈ ν(GB(K)), we set

Orbδx(f) =: Ox(f) (5.4)

and ν(δx) = x.

Exercise 5.3. Let x ∈ K× \ {1}. Then

µ−1
K (x) = A(k)

(
1 x
1 1

)
︸ ︷︷ ︸

γx

γx := .

For x = 0, we have

µ−1
K (0) = A(K) ⊔A(K)

(
1 1
0 1

)
︸ ︷︷ ︸

γ+
0

A(K) ⊔A(K)

(
1 0
1 1

)
︸ ︷︷ ︸

γ−
0

A(K).

For x =∞, we have

µ−1
K (∞) = A(K)ω ⊔A(K)ωγ+0︸︷︷︸

γ+
∞

A(K) ⊔A(K)ωγ−0︸︷︷︸
γ−
∞

A(K), ω =

(
1

1

)
.
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(b) Now we need to regularize and work out the following:

RTFA\G/A,η(f) =
∑

x∈P1(K)\{1}

Oηx(f),

where for x ̸= 0,∞, we set

Oηx(f) := Orbγx(f),

while for x = 0,∞, we have

Oηx(f) := Orbreg
γ+
x
(f) + Orbreg

γ−
x
(f).

5.2.7. Local transfer. We briefly survey local transfer. Let v be a place of K. Set
E/F := Lv/Kv. We have T = E×/F× ↪→ G = PGL2(F ) and also T ↪→ GB .

Definition 5.13. We say that f ∈ C∞
c (G) and fB ∈ C∞

c (GB) match if Oηx(f) =
Ox(fB) for all x ∈ ν(GB).

First, a notation. Other than writing that two functions match, you can just use
this symbol f ↔ fB . Now, if v is split in L, then B must split, and not only must
GB and G be isomorphic, but there must be an isomorphism respecting T and A,
i.e.,

(GB , T ) ∼= (G,A),

and the existence of matchings turns out to be trivial. So let’s assume that v is
non-split – this is the nontrivial case. Then you can genuinely have two quaternion
algebras.

Theorem 5.14. [Jacquet]

(i) For all f ∈ C∞
c (G), there exist (f+, f−) ∈ C∞

c (GB+)
⊕
C∞
c (GB−) such that

f ↔ f+ and f ↔ f−.
(ii) For all pairs (f+, f−), there exists f such that f ↔ f±.

We’ll also need the fundamental lemma. We’ll explain that briefly next time,
then say how to get the matching.

Remark 5.15. Given an algebraic subgroup H of an algebraic group G, there is a
way to make the quotientH ≤ G a variety. Even over a field, it is not necessarily the
case that H(k)\G(k) coincides with (H\G)(k), but the former is always contained
in the latter:

H(k)\G(k) ⊆ (H\G)(k). (5.5)

We have

(H\G)(k) =
⊔

α∈ker(H1(k,H)→H1(k,G))

Hα(k)\G(k),

thus

C∞
c ((H\G)(k)) =

⊕
α

C∞
c (Hα(k)\G(k)) .

If k is local, then (5.5) is closed and open.
Here we need H to be smooth. Otherwise, consider µ2\Gm with char(k) = 2;

theo rbits in this case are not open.
If X ⟳ G, we can form the stack [X/G]], and we have (groupoids)

[X(k)/G(k)] ⊂ [X/G](k) =
⊔

α∈H1(k,G)

Xα(k)/Gα(k).
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Here α corresponds to pure inner forms Gα
For example, if X = T\G ⟲ T (same notation as today), then we end up looking

at
[T\G/T ](k) =

⊔
B:quat

T (k)\GB(k)/T (k).

Continuing (day 3), recall that L/K is a quadratic extension of global fields, and
T = L×/K× ⊂ G = PGL2. We take

B ∈ QuatL(K) :=
{
quaternion algebras B/K with L ⊂ K

}
,

which gives rise to GB ⊃ T .

Theorem 5.16 (Waldspurger). Let π ⊂ Acusp(G). Then L( 12 , π)L(
1
2 , π× η) ̸= 0 if

and only if there exists B ∈ QuatL(K) and πB ∈ Acusp(G) such that π = JL(πB)
and PT |πB ̸= 0.

We explained this last time via an RTF comparison. To simplify, let us introduce
the notation

C(B) := −N(L−
B).

Then we saw that

RTFT\GB/T (f
B) =

∑
x∈C(B)

Ox(f
B) + vol([T ])O0(f

B) + vol([T ])O∞(fB)

and

RTFA\G/A,η(f) =
∑

x∈K×−{1}

Oηx(f) +Oη0,+(f) +Oη0,−(f) +Oη∞,+(f) +Oη∞,−(f).

Moreover, ⊔
B∈QuatL(K)

C(B) = K× − {1}.

We have seen that there is a notion of local transfer. Let v be a place of K. Take

C∞
c (Gv) ∋ fv ←→ (fBv )Bv , Bv ∈ QuatLv

(Kv).

We say that we have such a matching if for each x ∈ C(Bv), we have Oηx(fv) =
Ox(f

Bv ). We saw yesterday the first part of the following:

Theorem 5.17 (Jacquet). Every fv admits a transfer (fBv )Bv
, and conversely.

Moreover, if you have such matching functions, then for all x ∈ {0,∞}, we have

Oηx,+(fv) =
∑

Bv∈QuatLv
(Kv)

Ox(f
Bv ),

Oηx,−(fv) =
∑

Bv∈QuatLv
(Kv)

ε(Bv)Ox(f
Bv ),

where ε(Bv) is ±1 according to whether Bv is split or not.

Finally, we need the fundamentally lemma:

Theorem 5.18 (Jacquet). If v is nonarchimedean and unramified in L, then for
all fv ∈ Cc(G(Ov)\G(Kv)/G(Ov)), there is an explicit transfer fv ←→ (fBv )Bv ,
where

fBv =

{
fv if Bv is split,

0 otherwise.
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We’ll now explain how to use this ingredient to prove an identity relating relative
trace formulas.

5.2.8. Global comparison. For each place v of K, we are going to pick matching
test functions fv ←→ (fBv )Bv

, as before, with the requirement that for almost all
v, we have that fv = 1G(Ov) is the unit in the spherical Hecke algebra (i.e., the
characteristic function of the integral points) and

fBv =

{
1G(Ov) if Bv is split,

0 otherwise.

We then set

f =
∏
v

fv ∈ C∞
c (G(A)), fB =

∏
v

fBv ∈ C∞
c (GB(A)),

for B ∈ QuatL(K). Then for x ∈ C(B),

Oηx(f) =
∏
v

Oηx(fv) =
∏
v

Ox(f
Bv ) = Ox(f

B).

You can do the same for x ∈ {0,∞}, but you have to be a bit more careful:

Oηx,+(f) +Oηx,−(f) =
∏
v

Oηx,+(fv)︸ ︷︷ ︸∑
Bv

Ox(fBv )

+
∏
v

Oηx,−(fv)︸ ︷︷ ︸∑
Bv

ε(Bv)Ox(fBv )

.

Now you expand. Using what we said yesterday about when collections of local
quaternion algebras come from a global quaternion algebra, we see that the above
is

2 vol([T ])
∑
B

Ox(f
B).

As a consequence, we obtain∑
B

RTFT\GB/T (f
B) = RTFA\G/A,η(f).

We now do the spectral expansions. The right hand side expands to∑
π⊂Acusp(G)

∑
φ∈B

O.N.B.

PA(R(f)φ)PA,η(φ)

︸ ︷︷ ︸
Iπ(f)

+ · · · , (5.6)

where · · · comes from the Eisenstein part of the spectrum. Similarly, the left hand
side expands to ∑

B

∑
πB⊂Acusp(GB)

∑
φ∈πB

PT (R(fB)φ)PT (φ)︸ ︷︷ ︸
JπB (fB)

+ · · · . (5.7)

Today we will mostly ignore the dots – you either have to rid of them or to
compute them explicitly, and we don’t want to explain how to do either. So let’s
just pretend that · · · = 0.

Note that Iπ(f) ̸= 0 only if π is unramified outside S, and similarly, JπB (fB) ̸= 0
only if πB is unramified outside S. You can classify unramified representations
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very easily, using Satake parameters. Suppose given a cuspidal representation π
unramified outside S. We attach to this a Satake parameter

Sat(πS) := (Sat(πv))v/∈S ∈
∏
v/∈S

C×

z ∼ z−1
=: XS

and similarly
Sat(πB,S) ∈ XS .

The Satake isomorphism says that if you take the restricted tensor product of the
Hecke algebras outside S, namely

HS :=
⊗
v/∈S

′Cc (G(Ov)\G(Kv)/G(Ov)) ≃ C[XS ].

We now take advantage of the fact that the fundamental lemma is valid for all
elements of the Hecke algebra: for each element h ∈ HS , we have the matching

h ∗ f ←→ h ∗ fB

for all B. You can now replace f with h ∗ f and fB with h ∗ fB , which multiplies

the contribution of π to (5.6) by ĥ(πS) and that of πB to (5.7) by ĥ(πS). Given π ⊂
Acusp(G), we can isolate on both sides automorphic representations with the same
Satake parameters as π. But now it’s well known, for example on the PGL2 side,
that there’s only one automorphic representation with the same Satake parameters
as π, namely, π itself. This is strong multiplicity one. If you combine this with
the Jacquet–Langlands correspondence, you will see that on the other side, all that
remains are those πB whose Jacquet–Langlands lift is π, giving∑

B

∑
πB :

JL(πB)=π

JπB (fB) = Iπ(f).

By linear independence of characters, we see that Iπ ̸= 0 if and only if there exists
B and πB so that JL(πB) = π and JπB ̸= 0. On sees further that Iπ ̸= 0 if and
only if both PA,η|π ̸= 0 and PA|π ̸= 0. On the other hand, JπB ̸= 0 if and only if
PT |πB ̸= 0.

5.3. Gan–Gross–Prasad. In the remaining minutes, we very quickly explain a
generalization proposed by Gross–Prasad and Gan–Gross–Prasad (GGP) [6].

Waldspurger’s formula concerns T ↪→ GB . We may think of this as SO(2) ⊂
SO(3), or as U(1) ⊂ PU(2).

GGP concerns the generalization to SO(n) ⊂ SO(n+ 1) and U(n) ⊂ U(n+ 1).
Let’s focus on the unitary case.
Let L/K be a quadratic extension. To define unitary groups, we need hermitian

spaces. Let (V ′, h) be a hermitian space of dimension n+1 with respect to L/K. Fix
V ⊂ V ′ a non-degenerate hyperplane, with dimV = n and V ′ = V

⊕
L (orthogonal

direct sum, with L a line). It’s more convenient to work with the product of the
two unitary groups, GV := U(V )×U(V ′), which contains the diagonal embedding
of HV := U(V ). We now have a group and a subgroup, so we have a period, the
GGP period,

PHV := Acusp(G
V )→ C.

This is one of the two ingredients. The other is an L-function. It’s essentially
the direct generalization of the L-function appearing in the most general version
of Waldspurger’s theorem (the one involving L( 12 , πL × χ)). We can do the same
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here, except that it requires also using Langlands base change, a case of Langlands
functoriality. Start with a cuspidal automorphic representation π = πn ⊠ πn+1 ⊂
Acusp(G). Take its base change πL = πn,L⊠ πn+1,L ⊂ A(GL) (which is now known
to exist in generality, see the work of Mok, Minguez, Shin and White). In fact,
GL = GLn,L ×GLn+1,L. We may thus form the Rankin–Selberg L-function

L(s, πL) = L(s, πn,L × πn+1,L).

There’s actually a third ingredient, because we need the analogue of the fam-
ily of quaternion algebras. These are called pure inner forms. They are again
parametrized by linear algebraic data. They correspond toW , another n-dimensional
hermitian space, and construct similar groups, but with W replacing V . One de-
fines W ′ := W

⊕
L (orthogonal direct sum) and GW ⊃ HW . There’s again a

form of the Jacquet–Langlands correspondence, which gives a relation between au-
tomorphic forms on such groups as W varies. One way to define it is to say that
a cuspidal automorphic representation π ⊂ Acusp(G

V ) and π′ ⊂ Acusp(G
W ) are

nearly equivalent if they are the same locally at almost all places: πv ≃ π′
v for

almost all v.

Theorem 5.19 (GGP conjecture). Let π ⊂ Acusp(G
V ). Assume that πL is generic.

Then the following are equivalent:

(i) L( 12 , πL) ̸= 0.
(ii) There exists W , as before, and a cuspidal representation π′ of the correspond-

ing pure inner form, such that π and π′ are nearly equivalent and PHW |π′ .

Remark 5.20. • This follows from the work of many people (and we’ll prob-
ably forget some of them). What started it all was the work of Jacquet–
Rallis [11]. What they did was they found a pair of RTF’s whose comparison
was expected to give the conjecture (the proof is similar to what we have
seen in the Waldspurger case). They also wrote down what the matching
should be, precisely. There was the work of Wei Zhang [15], Zhiwei Yun,
Beuzart-Plessis–Liu–Zhang–Zhu [5], and [4].
• The analogous conjecture for (SO(n),SO(n + 1)) is still open except for
small values of n. The case n = 2 is essentially Waldspurger; n = 3 is
the formula for trilinear period that appeared in Chen’s talk and follows
from work of Garrett, Kudla–Harris and Ichino. Already for n = 4, it’s not
known in generality.
• There are similar conjectures for (U(m),U(n)). These are known for any m
and n. There’s first the case where n ̸≡ m(2). This involves, as we’ve seen
in Chen’s lectures, a degenerate Fourier coefficient (but no theta series).
The proof of the (U(n),U(n + 1)) case was extended to this more general
case in work of Beuzart-Plessis–Chaudouard. The case where n ≡ m(2)
is a new setting, where you have to compare two different RTF’s involving
Fourier–Jacobi periods. This case involved theta series. It was very recently
established by Boisseau–Lu–Xue, again using a comparison of RTF.
• The proof uses RTF comparison (Jacquet–Rallis). The two RTF to be
compared are

RTFH∨\G∨/H∨ , RTFH1\G′/H2,η

where

H2 := GLn,K ×GLn+1,K ⊂ G′ := GLn,L ×GLn+1,L ⊃ H1 := GLn,L.
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