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Abstract. We record some exercises whose purpose is to verify that certain
classes of vectors in representations of SO(3) and PGL2(R) are “localized” in

a strong sense under the action of those groups.

1. Overview

In this note, we give exercises that aim to convey some computational feeling
for “localized vectors” in the precise sense defined in §3 of this note, focusing on
low-rank examples. Along the way, we recall the basic representation theory for
such examples.

2. Setup

We let T → ∞ be an asymptotic parameter, and retain the asymptotic notation
and conventions of §2.1 of this note concerning “T -dependent elements”, “fixed”
(equivalently, “T -independent”) and “classes”. In particular, we recall that “class”
means “collection of T -dependent sets”. A typical example is the class O(1) inside
C, consisting of all T -dependent subsets S = ST ⊆ C for which there is a fixed
C ≥ 0 so that for all T , we have ∥cT ∥ ≤ C for all cT ∈ ST .

Let G be a fixed real Lie group, and let π = πT be a T -dependent unitary
representation. We recall Theorem 3.6 from this note:

Theorem 1. Let τ ∈ g∧ with τ = O(1). Let M be a class of T -dependent vectors
v = vT in π = πT with the following properties:
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(i) For each v ∈M , we have ∥v∥ = O(1).
(ii) For all u, v ∈M , we have u+ v ∈M .
(iii) For all v ∈M and c ∈ C with c = O(1), we have cv ∈M .
(iv) For each fixed ε > 0, fixed x ∈ g and each v ∈M , we have

xv − ⟨x, τ⟩v ∈ T 1/2+εM. (2.1)

That is to say, the T -dependent vector on the left hand side may be written
T 1/2+εu, where u belongs to the class M .

Then each v ∈M is localized at τ in the sense of Definition 3.3 of this note.

The purpose of the present note is to give some examples of classes M satisfying
the above conditions, hence, in particular, examples of localized vectors. In each
case, the first three properties will clearly hold, so we do not mention them; the
main point is to verify the approximate eigenvector property (2.1) for elements x
of a fixed basis of g.

Exercise 1. Let τ be a T -dependent element of g∧ with τ = O(T ). For x ∈ g, set

x̄ := x− τ(x).

Consider the following condition (*) on a T -dependent vector v ∈ π:

• for all fixed ε > 0, fixed k ∈ Z≥0, and fixed x1, . . . , xk ∈ g, we have

∥x̄1 · · · x̄kv∥ ≪ T k/2+ε.

(i) Let M be a class satisfying the hypotheses of Theorem 1. Show that each
v ∈M satisfies (*).

(ii) Let v be a T -dependent vector in π = πT satisfying (*). Fix a basis B of g,
and let M denote the class of T -dependent vectors in π of the form∑

x1,...,xk∈B
cx1,...,xk

x̄1 · · · x̄kv,

where k = O(1) and each cx1,...,xk
= O(1). Verify that M satisfies the hy-

potheses of Theorem 1.

3. The group SO(3) via weight vectors

3.1. Lie algebra. We consider the Lie group SO(3). Its Lie algebra so(3) admits
a basis {R1, R2, R3}, where for any angle θ, the element exp(θRj) defines rotation
by θ about the jth axis. These satisfy the commutation relations

[R1, R2] = R3, [R2, R3] = R1, [R3, R1] = R2.

The center of the universal enveloping algebra is generated by the Casimir element

Ω = −(R2
1 +R2

2 +R2
3).

Define the following elements X,Y of the complexified Lie algebra so(3)C:

X := R1 + iR2, Y := −R1 + iR2.

Then X,Y,R3 is a basis for so(3)C satisfying the commutation relations

[X,Y ] = 2iR3, [iR3, X] = X, [iR3, Y ] = −Y. (3.1)

We observe also that

R1 =
X − Y

2
, R2 =

X + Y

2i
,
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Ω =
XY + Y X

2
−R2

3.

By writing XY = [X,Y ] + Y X and appealing to the formula (3.1) for [X,Y ], we
see that

Ω = Y X + iR3(iR3 + 1). (3.2)

Similarly,
Ω = XY + iR3(iR3 − 1). (3.3)

The imaginary dual of the Lie algebra identifies with the space of triples of
imaginary numbers:

so(3)∧ ∼= iR3. (3.4)

Here ξ ∈ iR3 corresponds to the linear map so(3) → iR given on basis elements by
Rj 7→ ξj .

3.2. Representations. Let π be a (complex) representation of SO(3). It may be
decomposed into eigenspaces for R3. Since exp(2πR3) = 1, the eigenvalues of iR3

are integers:
π = ⊕m∈Zπ(m), π(m) := {v ∈ π : iR3v = mv}.

Them for which π(m) ̸= 0 are called the weights of π, and the dimensions dimπ(m)
the corresponding weight multiplicities. From the commutation relations (3.1), we
see that

X : π(m) → π(m+ 1), Y : π(m) → π(m− 1). (3.5)

Proposition 2. Let π be an irreducible unitary representation of SO(3). Then Ω
acts on π by a scalar of the form

Ωπ = ℓ(ℓ+ 1) (3.6)

for some nonnegative integer ℓ. This scalar determines the isomorphism class of π.
In fact, there is a basis

e−ℓ, e−ℓ+1, . . . , eℓ

for π on which the Lie algebra acts by the formulas

Xem = (Ωπ −m(m+ 1))
1/2

em+1 (3.7)

Y em+1 = (Ωπ −m(m+ 1))
1/2

em, (3.8)

iR3em = mem. (3.9)

If π is unitary, then this basis is orthonormal.

Exercise 2. Attempt to work out the proof of Proposition 2, or as many parts of
it as you can, on your own, without reading what’s written here in detail.

Proof. Since SO(3) is compact, we know by the Peter–Weyl theorem that π is
finite-dimensional. There is thus a largest element ℓ ∈ Z≥0 with π(ℓ) ̸= 0. For any
v ∈ π(ℓ), we have Xv ∈ π(ℓ+ 1) = {0}, hence Xv = 0. By (3.2), it follows that

0 = Y Xv = Ωv − ℓ(ℓ+ 1)v. (3.10)

Since π is irreducible and Ω commutes with the action of SO(3), we know by Schur’s
lemma that Ω acts on π by a scalar. Taking v to be a nonzero element of π(ℓ), we
see from (3.10) that this scalar must be given by (3.6). We now choose a nonzero
vector eℓ ∈ V (ℓ) and define em by reverse induction for integersm with −ℓ ≤ m < ℓ
by requiring that (3.8) hold, noting that the square root is positive in the stated
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range. Using (3.3), we see that Y e−ℓ = 0. By the mapping property (3.5), we have
em ∈ π(m), hence (3.9) holds. By the formula (3.3) for Ω, we have

XY em+1 = Ωem+1 −m(m+ 1)em+1 = (Ω−m(m+ 1))em+1, (3.11)

and so (3.7) holds. From the formulas established thus far, we see that the em (−ℓ ≤
m ≤ ℓ) span an invariant subspace of π, which by the irreducibility hypothesis must
be π itself.

We have established all assertions except that the basis may be taken orthonor-
mal when π is unitary. We may assume that eℓ was normalized to be a unit vector,
and will verify then by reverse inductive on m < ℓ that em is then likewise a unit
vector. To that end, observe first by (3.8) that

(Ωπ −m(m+ 1))∥em∥2 = ⟨Y em+1, Y em+1⟩ ,

then use that the adjoint of Y is −Ȳ = X to see that

⟨Y em+1, Y em+1⟩ = ⟨XY em+1, em+1⟩ .

By (3.11), we deduce that em and em+1 have the same norm, so the induction
follows as claimed. □

The integer ℓ as in the conclusion of Proposition 2 is called the highest weight of
π. The coadjoint orbit for π turns out to be given in the optic (3.4) by the sphere
of radius ℓ+ 1/2:

Oπ =
{
(a, b, c) : a2 + b2 + c2 = (T + 1

2 )
2
}
.

3.3. Localized vectors. In the following exercises, we assume that the asymptotic
parameter T → ∞ is valued in the nonnegative integers, and let π denote the T -
dependent representation having highest weight T .

Remark 3. The purpose of the following exercises is not to overload on analysis
of localized vectors using weight vector bases, but rather to illustrate the strong
parallel with what happens for SO(3) as explained above in §3.3.

Exercise 3. Let M denote the class of T -dependent vectors v in π given in terms
of a basis as in Proposition 2 by v =

∑
m amem, where the coefficients have the

following properties:

(1) am = 0 unless m = T +O(1).
(2) Each am = O(1).

Verify that for all v ∈M , we have

Xv ∈ T 1/2M,

Y v ∈ T 1/2M,

iR3v − iTv ∈ T 1/2M.

Deduce from Theorem 1 that every element of M is localized at the T -dependent
element τ ∈ g∧ given in the optic (3.4) by

τ = (0, 0, iT ).

Exercise 4. Let M be the class of T -dependent vectors in π of the form
∑
amem,

where the coefficients have the following properties:

(1) am = 0 unless m = O(T 1/2).
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(2) The function of θ ∈ R/Z defined by

a(θ) :=
∑
n

a(n)e(nθ), e(θ) := e2πiθ

is an L2-normalized bump of width T−1/2, in the following sense: for fixed
k, ℓ ∈ Z≥0,

a(ℓ)(θ) ≪ T 1/4+ℓ/2

(
1 +

∥θ∥
T−1/2

)−k

, (3.12)

where a(ℓ) denotes the ℓth derivative and ∥θ∥ the distance to the nearest
integer.

We note that, by Parseval, the second condition implies that
∑

m|am|2 = O(1).

(i) Show that if f ∈ C∞
c (R) is fixed, then the T -dependent vector

∑
m amem with

coefficients

an := T−1/4f
( n

T 1/2

)
(3.13)

belongs to M .
(ii) Show that for all v ∈M ,

Xv − Tv ∈ T 1/2M,

Y v − Tv ∈ T 1/2M,

R3v ∈ T 1/2M.

Deduce that every element of M , and in particular, the element defined by (3.13),
is localized at the T -dependent element τ ∈ g∗ given in the optic (3.4) by

τ = (0,−iT, 0).

4. The group PGL2(R) via weight vectors

4.1. Preliminaries. We now turn to the group

G := PGL2(R).

We will use the following notation for a basis of its complexified Lie algebra sl2(R)C =
sl2(C):

X :=
1

2i

(
1 i
i −1

)
,

Y :=
1

2i

(
1 −i
−i −1

)
,

H :=
1

2i

(
0 1
−1 0

)
.

The standard maximal compact connected subgroup K of G, namely the image of
SO(2), is then

K = {exp(θH) : θ ∈ R/2πZ} .
The commutation relations are

[X,Y ] = −2H, [H,X] = X, [H,Y ] = −Y.
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The center of the universal enveloping algebra is generated by the Casimir element

Ω := H2 − XY + Y X

2
= H(H − 1)−XY

= H(H + 1)− Y X.

The imaginary dual of the Lie algebra identifies with the space of imaginary traceless
2× 2 matrices:

sl2(R)∧ ∼= i sl2(R). (4.1)

Here ξ ∈ i sl2(R) corresponds to the linear map sl2(R) → iR given by x 7→ trace(xξ).

4.2. Representations.

Proposition 4. Let π be an irreducible unitary representation of PGL2(R). Then
Ω acts on π by a scalar, say Ωπ. Then, either:

(i) π is a one-dimensional representation, either trivial or the sign representation,
in which case Ωπ = 0.

(ii) π is a discrete series representation π(k) for some k ∈ Z≥1, with Ωπ = k(k−
1). (We have chosen the numbering so that such representations correspond
to holomorphic modular forms of weight 2k in the traditional sense.)

(iii) π is a unitary principal series representation π(t, ε), with
• t ∈ R and ε ∈ {±1}, or
• t ∈ i( 12 ,

1
2 )− {0} and ε = 1,

with Ωπ = − 1
4 − t2.

The only equivalences are that π(t, ε) ∼= π(−t, ε).
The representation π = π(t, ε) admits a basis em, indexed by m ∈ Z, on which

the Lie algebra elements act by the formulas

Xem = (m(m+ 1)− Ωπ)
1/2em+1,

Y em+1 = (m(m+ 1)− Ωπ)
1/2em,

Hem = mem,

diag(−1, 1)em = (−1)εe−m.

The representation π = π(k) admits a basis em, indexed by {m ∈ Z : |m| ≥ k}, on
which the Lie algebra elements act by the same formulas as above, but with ε = 1.

Proof. Similar to that of Proposition 2. □

The tempered irreducible representations are the π(k) and the π(t, ε) with t ∈ R.
For either of these, the coadjoint orbit Oπ is given in the optic (4.1) by

Oπ =
{
0 ̸= ξ ∈ i sl2(R) : det(ξ/i) = 1

4 +Ωπ

}
. (4.2)

4.3. Localized vectors.

Exercise 5. Let π be the T -dependent representation of PGL2(R) given by the
discrete series representation πT = π(k) of lowest weight

k = kT := T.

Let M denote the class of T -dependent vectors v in π of the form v =
∑

m amem,
where

(1) am = 0 unless m = T +O(1), and
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(2) each am = O(1).

Verify that for all v ∈M , we have

Xv ∈ T 1/2M,

Y v ∈ T 1/2M,

Hv − Tv ∈ T 1/2M.

Deduce that every element of M is localized at the T -dependent element τ ∈ g∗

given in the optic (4.1) by

τ = iT

(
0 1
−1 0

)
.

Exercise 6. Let π be the T -dependent representation of PGL2(R) given by the
tempered principal series representation πT = π(t, ε), where

t = tT := T

while ε ∈ {±1} is fixed. Let M denote the class of T -dependent vectors v in π of
the form v =

∑
m amem, where the coefficients satisfy the support condition

am ̸= 0 =⇒ m = O(T 1/2)

as well as the Fourier series condition (3.12) enunciated in Exercise 4. Verify that
for all v ∈M , we have

Xv − Tv ∈ T 1/2M,

Y v − Tv ∈ T 1/2M,

Hv ∈ T 1/2M.

Deduce that every element of M is localized at

τ = iT

(
1 0
0 −1

)
.

Remark 5. Suppose that π as in Exercise 6 comes equipped with a equivariant
isometric embedding

ι : π ↪→ L2(Γ\G)
for some finite volume quotient Γ\G by a discrete subgroup Γ < G = PGL2(R),
such as Γ = PGL2(Z). Under such an embedding, the spherical vector e0 maps to
an L2-normalized Maass form

φ0 := ι(e0) ∈ πK ⊆ C∞(Γ\G/K)

of eigenvalue 1/4+ t2. The image of the class M is closely related to the microlocal
lift of Zelditch et al (see [10, 6, 9, 1]). More precisely, for each unit vector v ∈ M ,
its image

φ := ι(v) ∈ π ⊆ C∞(Γ\G)
may be shown to have the following properties

• For each fixed Ψ ∈ C∞
c (Γ\G/K), we have∫

Γ\G
|φ|2Ψ =

∫
Γ\G

|φ0|2Ψ+O(T 1/2+ε).
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• Let Gτ ≤ G denote the centralizer of τ , thus Gτ is the diagonal subgroup

Gτ =

(
∗ 0
0 ∗

)
.

For each fixed Ψ ∈ C∞
c (Γ\G) and fixed g ∈ Gτ , we have∫

x∈Γ\G
|φ(xg)|2Ψ(x) dµ(x) =

∫
x∈Γ\G

|φ(x)|2Ψ(x) dµ(x) + O(T 1/2+ε).

For some more precise assertions, see [7, §7.1, Lemma 2] (direct link: 2) for further
discussion.

Exercise 7. Let π be any fixed infinite-dimensional irreducible unitary representa-
tion of PGL2(R) (e.g., the tempered principal series representation π(0, 1)). Let M
denote the class of T -dependent vectors v in π of the form v =

∑
m amem, where

the coefficients satisfy the support condition

am ̸= 0 =⇒ m = T +O(T 1/2)

as well as the Fourier series condition (3.12) enunciated in Exercise 4. Verify that
for all v ∈M , we have

Xv − Tv ∈ T 1/2M,

Y v − Tv ∈ T 1/2M,

Hv − Tv ∈ T 1/2M.

Deduce that every element of M is localized at

τ = iT

(
1 −1
1 −1

)
.

5. The group PGL2(R) via the Kirillov model

5.1. Preliminaries. Set G := PGL2(R). We will work with the subgroups

N :=

{
n(x) :=

(
1 x
0 1

)
: x ∈ R

}
,

A :=

{
a(y) :=

(
y 0
0 1

)
: y ∈ R×

}
,

B := NA =

(
∗ ∗
0 ∗

)
.

Let ψ : R → U(1) be a nontrivial unitary character. We may identify ψ with a
character of the subgroup Set

C∞((N,ψ)\G) := {W ∈ C∞(G) :W (n(x)g) = ψ(x)W (g) for all (x, g) ∈ R×G}
Let π be an irreducible representation of G. More precisely, we denote here by π
the subspace of smooth vectors. We recall that π is generic if there is an equi-
variant embedding π ↪→ C∞((N,ψ)\G). The space of such embeddings is then
one-dimensional, so the image, call it W(π, ψ), is well-defined. Moreover, the re-
striction map

W(π, ψ) → {functions A→ C}
is injective, and its image contains C∞

c (A). Consequently, each W ∈ W(π, ψ) is
determined by the function W : R× → C given by

W (y) :=W (a(y)),
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and every smooth compactly-supported function arises in this way. We obtain in
this way a realization of π as a space of functions on R×, called the Kirillov model.
When π is unitary, an invariant inner product may be given in the Kirillov model
by

⟨W1,W2⟩ :=
∫
y∈R×

W1(y)W2(y) d
×y, d×y :=

dy

|y|
. (5.1)

Standard references for these facts include [3, §6], [2, §10.2], [4].
The action of B on the Kirillov model is completely explicit: we have

n(x)W (y) = ψ(yx)W (y), (5.2)

a(u)W (y) =W (yu). (5.3)

Indeed (5.2) follows from the commutation property a(y)n(x) = n(yx)a(y) and the
left N -equivariance of W , while (5.3) is obvious.

The infinitesimal generators of N and A are the matrices

e :=

(
0 1
0 0

)
, h :=

1

2

(
1 0
0 −1

)
.

These act on π by differential operators. The formulas for their action is simplest
when

ψ(x) := eix, (5.4)

so let’s specialize to that case. By differentiating (5.2) and (5.3), we see that

eW (y) = iyW (y), (5.5)

hW (y) = y∂yW (y). (5.6)

The other standard Lie algebra basis element is

f :=

(
0 0
1 0

)
.

These elements satisfy

[e, f ] = 2h, [h, e] = e, [h, f ] = −f. (5.7)

The Casimir element Ω is given (with the same normalization as in §4.1) by

Ω = h2 +
ef + fe

2
= h2 − h+ ef.

Writing Ωπ as before for the eigenvalue by which Ω acts on π, we can solve for the
action of f on π:

fW (y) =
1

iy

(
Ωπ − (y∂y)

2 + y∂y
)
W (y). (5.8)

This formula is the key to verifying the fact recorded above, that any smooth
compactly-supported function on R× arises from some (smooth!) vector in π. We
refer to [4] and [8, §12] (direct link: §12) for further discussion.
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5.2. Localized vectors. We just give one representative example of the sort of
analysis that can be achieved in this way.

Exercise 8. Let π be a T -dependent generic irreducible unitary representation of
PGL2(R), realized in its Kirillov model with respect to the character (5.4) as above
and with unitary structure given by (5.1). Assume that

Ωπ = O(T 2).

In other words, in the notation of §4.2, either
(1) π = π(t, ε) with t = O(T ), or
(2) π = π(k) with k = O(T ).

Let α and ρ be T -dependent real numbers with ρ = O(T ) and α ≍ T (see §2.1 of
this note for notation). Let M denote the class of all T -dependent elements W ∈ π
that are given in the Kirillov model for large enough T by the formula

W (y) = T 1/4|y|iρϕ
(
y − α

T 1/2

)
, (5.9)

where ϕ belongs to some fixed bounded subset of the space C∞
c (R×). (We recall

that a subsetB of this space is bounded if there are constants Cn ≥ 0 and a compact
set E ⊆ R× such that each ϕ ∈ B is supported in E and has nth derivative bounded
in L∞-norm by Cn.)

(i) Verify that ∥W∥ = O(1) for each W ∈M .
(ii) Verify that for each W ∈M , we have

eW − iαW ∈ T 1/2M,

hW − iρW ∈ T 1/2M.

(iii) Use (5.8) to show that

fW − iβW ∈ T 1/2M,

where

β :=
−ρ2 − Ωπ

α
.

(iv) Deduce that every element of M is localized at the T -dependent element of
g∧ given by

τ = i

(
ρ β
α −ρ

)
,

for which

det(τ/i) = Ωπ.

(Compare with (4.2).)
(v) Define the Weyl group element

w :=

(
0 1
1 0

)
∈ G,

which satisfies

Ad(w)e = f, Ad(w)h = −h, Ad(w)f = e.

Show that for each W ∈ M , the w-translate wW of W , given in the Kirillov
model by

wW (y) :=W (a(y)w), (5.10)



SOME EXERCISES CONCERNING LOCALIZED VECTORS IN LOW RANK 11

is localized at

w · τ = i

(
−ρ α
β ρ

)
.

(vi) Show that fixed k, ℓ ∈ Z≥0, we have∫
y∈R×

∣∣∣∣ (y∂y)k|y|iρwW (y)

T k/2

∣∣∣∣2 ∣∣∣∣y − β

T 1/2

∣∣∣∣ℓ d×y ≪ 1.

Informally, and at least when β ≍ T , this says that wW (y) looks roughly like
T 1/4|y|−iρ times a bump function on β +O(T 1/2).

[Hint: consider the identity

(e− iβ)k(h+ iρ)ℓwW = w(f − iβ)k(−h+ iρ)ℓW

and use that the norm defined by (5.1) is G-invariant and that each element
of M has norm O(1).]

Remark 6. Set Γ := PGL2(Z) < G. Suppose that the representation π of G
considered in Exercise 8 comes with an embedding π ↪→ L2

cusp(Γ\G) as a Hecke
eigenspace, with Hecke eigenvalues λ : N → C. Then, as explained in §2.2 of
this note, each φ ∈ π (regarded as a function φ : Γ\G → C) admits a Whittaker
expansion

φ(g) =
∑
n ̸=0

λ(|n|)
|n|1/2

W (a(2πn)g) (5.11)

where W ∈ W(π, ψ) denotes the image of φ under the equivariant map defined
by integrating over (Γ ∩ N)\N against ψ−1. (The factor 2π appears because we
are using the unconventional choice (5.4) for ψ.) The left-invariance of φ under
w implies a case of the Voronoi summation formula (see this note of Cogdell for
a more general discussion): by applying the expansion (5.11) to both sides of the
identity φ(1) = φ(w), and with the same abbreviations

W (y) :=W (a(y)), wW (y) :=W (a(y)w)

as before, we obtain∑
n̸=0

λ(|n|)
|n|1/2

W (2πn) =
∑
n ̸=0

λ(|n|)
|n|1/2

wW (2πn).

The values W (y) and wW (y) are related by an integral transform involving the
Bessel function attached to π (see §2.2 of Cogdell’s note, or [5, Appendix A]). When
W (y) is given by (5.9), one can derive asymptotics for wW (y) using stationary
phase analysis; derivations like this may be found in many analytic number theory
papers. One consequence of Exercise 8 is that in many cases, the shapes of W (y)
and wW (y) may be related by “pure thought”.

6. Some exercises from AV’s lectures

Exercise 9. Let πℓ denote the irreducible representation of SO(3) of highest weight
ℓ, and em (−ℓ ≤ m ≤ ℓ) its basis of weight vectors (see §3.2).
(i) Show that for each fixed g ∈ SO(3) that is not a rotation about the z-axis,

the matrix coefficient
⟨geℓ, eℓ⟩

decays exponentially with respect to ℓ.

https://people.math.osu.edu/cogdell.1/bessel-www.pdf
https://people.math.osu.edu/cogdell.1/bessel-www.pdf
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(ii) Show that the same does not hold in general for the matrix coefficient

⟨ge0, e0⟩.

Exercise 10. Show that for x ∈ R3, we have∫
ξ∈S2

ei⟨x,ξ⟩ dσ(ξ) =
sin(|x|)

|x|
,

where σ denotes the rotation-invariant probability measure on the sphere. [Hint:

use Archimedes’s theorem to show that the left hand side is (1/2)
∫ 1

−1
eit|x| dt.]

Exercise 11. Let f ∈ S(R). Define its Fourier transform

f̂(ξ) :=

∫
R
f(x)e−2πixξ dx.

Show that for some absolute constant C, we have for all x0, ξ0 ∈ R the lower bound[∫
(ξ − ξ0)

2 |f̂ |2
] [∫

(x− x0)
2 |f |2

]
≥ C.

Exercise 12. Op(a) is defined for nice enough functions a on g∧ by

Op(a)v =

∫
X∈g:
|X|≪1

a∨(X)(eX · v) dX.

We checked in lecture that if a is linear, i.e.,

a(λ) = ⟨λ,X⟩
for some X ∈ g, then

Op(a) = action of X.

Figure out the analogous formula when a is a polynomial.

Exercise 13. The purpose of this exercise is to emphasize that the sphere on which
the spherical harmonics live is not directly related to the coadjoint orbits, which
are also spheres. To that end, formulate a precise form of the following assertion
and show it: the mass of the spherical harmonic Y ℓ

ℓ (regarded as a function on the
two-sphere S2) is concentrated near the equator (e.g., exponentially decaying away
from it). Compare this with the microlocal support on the coadjoint orbit.

If you’re interested, think about other weight vectors.

7. TODO

(1) Something for SO(3) using the Borel–Weil model over CP1.
(2) Something for induced models for PGL2(R).
(3) Some follow-up to exercise 5.2 explaining what it says about wW (y), for w

the nontrivial Weyl element.
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