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Abstract. We discuss and compare two ways to estimate a short second
moment of L-functions on PGL2 in the spectral aspect: that of Iwaniec [7],

using the approximate functional equation and Kuznetsov formula, and that
of [12] using period integrals.

Remark 1. This is a lightly edited version of “log-2022-03-08-a.tex”. It needs a
lot of polishing, but might be useful to someone even in its current state.

1. Goal

Take
G := PGL2(R),

Γ := PGL2(Z) ↪→ G,

H := GL1(R) ∼=
(
∗ 0
0 1

)
↪→ G,

ΓH := GL1(Z) = {±1} ↪→ H.

Let π ⊂ L2
cusp(Γ\G) be a cuspidal automorphic representation corresponding to a

Maass form of eigenvalue 1/4 + T 2. We aim to show that

L(π, 1
2 ) ≪ T 1/2−δ (1.1)

for some fixed δ > 0.
Such an estimate was first shown by Iwaniec [7] (initially under an additional hy-

pothesis, which Iwaniec later observed could be removed using the identity λ(p)2−
λ(p2) = 1). Iwaniec’s method consists of estimating an amplified second moment
over T in an interval of length a bit more than 1. This method was adapted to
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PGL3 by Blomer–Buttcane [3, 4], using an amplified fourth moment, and then to
GLn in [12] (direct link), using an amplified 2(n − 1)th moment. In the works of
Iwaniec and Blomer—Buttcane, the moment is estimated using the approximate
functional equation, Kuznetsov formula, and several applications of Poisson sum-
mation. In [12], the moment is estimated implicitly by direct analysis of an integral
representation for the L-function, with vectors chosen as in [14] and the averaging
implemented via the pretrace formula like in [8].

Remark 2. The best known bound for (1.1) is to due to Ivic [6] , who showed
that (1.1) holds for any fixed δ < 1/6. Ivic’s method consists of estimating an
unamplified fourth moment over T in an interval of length a bit more than T 1/3

(compare with [10, 11, 5, 2]). Such approaches using “higher moments” have no
known extension beyond GL2. It would be significant to identify such an extension.

2. Automorphic background

2.1. Cuspidal automorphic representations. The space L2
cusp(Γ\G) consists of

square-integrable functions on Γ\G whose constant term vanishes. It is simultane-
ously a representation for the group G, acting via right translation, and the Hecke
algebra, acting via left translation with respect to double cosets in Γ\PGL2(Q)/Γ.
Under these actions, it decomposes as a direct sum of irreducible representations,
each occurring with multiplicity one. We denote by π the space of smooth vectors
inside one such representation.

2.2. Whittaker expansion. The Hecke eigenvalues of π are described by a mul-
tiplicative function λπ : N → C, which specifies the eigenvalues for a spanning set
of double cosets. For φ ∈ π, one defines the Whittaker function Wφ : G → C by

Wφ(g) :=

∫
x∈R/Z

φ

((
1 x
0 1

)
g

)
e(−x) dx,

where we employ the standard abbreviation e(t) := e2πit. Conversely, φ may be
recovered from λπ and Wφ via the formula

φ(g) =
∑
n ̸=0

λπ(|n|)
|n|1/2

Wφ

((
n 0
0 1

)
g

)
, (2.1)

with the sum taken over all nonzero integers n.

2.3. Kirillov model. The Whittaker model W(π) for π is defined to consist of
all functions of the form Wφ. The theory of the Kirillov model implies that the
restriction map

W(π) → {functions H → C}

is injective, and that its image contains C∞
c (H). Combining this fact with (2.1)

tells us that

• any φ ∈ π is determined by Wφ : H → C, and
• every smooth compactly-supported function H → C determines a unique
φ ∈ π.
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3. Integral representation

The L-function L(π, s) may be defined for ℜ(s) > 1 by the absolutely convergent
Dirichlet series

∑
n∈N λπ(n)n

−s and in general by meromorphic continuation. By
unfolding (2.1), one obtains the Hecke/Jacquet–Langlands integral representation∫

ΓH\H
φ = L(π, 1

2 )

∫
H

Wφ. (3.1)

4. Coadjoint orbits

We denote by g the Lie algebra of G and by g∗ its linear dual. Using the trace
pairing, we may identify g∗ with g, which we identify further with the space sl2(R)
of traceless 2× 2 matrices ξ. The coadjoint orbit

Oπ ⊆ g∗

attached to π is the one-sheeted hyperboloid cut out by the equation

det(ξ) = −T 2.

(See for instance §6.2-§6.3 of Quantum variance III.) It comes with a natural sym-
plectic volume form that describes the character of π via the Kirillov formula (see
[14, §6]). We note that in the coordinates

ξ =

(
a b
c −a

)
=

(
x y − z

y + z −x

)
,

we have
det(ξ) = −a2 − bc = z2 − y2 − x2.

In particular, Oπ contains the circle {(x, y, 0) : x2 + y2 = T 2}. The circular strip
{(x, y, z) ∈ Oπ : |z| ≤ 1/2} has symplectic volume one; in the orbit method heuristic
described in [14, §1.7], it corresponds to the weight zero vector in π.

The integrals (3.1) may be understood as describing how π oscillates against the
trivial character of H. The orbit method suggests [14, §1.9] that such oscillation
may be understood in terms of the intersection

Oπ ∩ h⊥,

i.e., the preimage in Oπ of the trivial element 0 of h∗. That intersection is given in
(x, y, z) coordinates by

{(0, y, z) : y2 − z2 = T 2}
and in (a, b, c) coordinates by

{(0, b, c) : bc = T 2}.
It is a closed H-orbit, with trivial stabilizer.

We pick a point τ ∈ Oπ ∩ h⊥ of size comparable to T . For concreteness, let us
take

τ =

(
0 T
T 0

)
.

Remark 3. For the variant problem concerning π attached to a holomorphic form
of weight 2k, we would take T := k−1/2, we would take Oπ cut out by det(ξ) = T 2,
and we would take

τ =

(
0 −T
T 0

)
.

See for instance §8.4 of Quantum variance III.
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5. Choice of vector

We seek a unit vector φ ∈ π that is “localized at τ .” Informally, this means that
for each fixed Lie algebra element X ∈ g, we have

Xφ = i⟨X, τ⟩φ+O(T 1/2). (5.1)

For further informal discussion of this concept, see [14, §1.7] and [13, §2.5] . For
a precise definition, see §3 of this note; for exercises, see this note; for further
discussion, see §7.1 of Quantum variance III, or [12, §14] (direct link: §14).

Such a vector φ may be described readily in the Kirillov model for π. Recall
(from §2.3) that this model consists of the restrictions to H of elements W of the
Whittaker model W(π). It will be convenient to think of such restricted elements
W as functions on R× via the abbreviation

W (y) := W

((
y 0
0 1

))
.

We consider the following basis elements for g:

∂a =

(
1 0
0 −1

)
, ∂b =

(
0 1
0 0

)
, ∂c =

(
0 0
1 0

)
.

The action of the first two of these elements on the Kirillov model is given very
simply:

∂aW (y) = 2yW ′(y), ∂bW (y) = 2πiyW (y).

From now on, we will be very vague and informal with asymptotic notation.
For a precise discussion, we refer to Exercise 6 of this note. Since ⟨∂a, τ⟩ = 0 and
⟨∂b, τ⟩ = T , the condition (5.1) says in particular that

∂aWφ = O(T 1/2), ∂bWφ = iTWφ +O(T 1/2).

These formulas suggest taking the following smoothened L2-normalized character-
istic function:

Wφ(y) = T 1/41smooth
T/2π+O(T 1/2)(y). (5.2)

Using that Wφ is an eigenfunction under the Casimir operator, one can check also
that

∂cWφ = iTWφ +O(T 1/2).

This is the content of Exercise 6 of this note. For GLn, precise forms of all these
estimates are established in [12, Part 3] (direct link: Part 3).

Remark 4. This choice of φ is closely related to the “microlocal lift” of Zelditch
[17] et al., see [9, 16, 1]. More precisely, it is (asymptotically) a G-translate of
the usual definition; the limit invariance for L2-masses will be with respect to the
stabilizer Gτ of τ , namely

Gτ =

{(
cosh t sinh t
sinh t cosh t

)}
, (5.3)

rather than with respect to the diagonal subgroup.

By choosing the smooth bump function implicit in (5.2) to be nonnegative, we
may arrange that ∫

H

Wφ ≍ T−1/4,
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so that (3.1) reads

T−1/4L(π, 1
2 ) ≍

∫
ΓH\H

φ. (5.4)

Our task is to show that the right hand side is ≪ T 1/4−δ.

6. Truncation

We now indicate why the integral on the right hand side of (5.4) of may be
effectively truncated to a fixed compact set. For a detailed discussion of this point,
see [12, §5.3] (direct link: 5.3) or [10, §5.1.4] or [15, §3] (or §3 of this informal note).

Consider, for a fixed even “truncation” function T ∈ C∞
c (H), the map

I : H → C

I(Y ) :=

∫
y∈ΓH\H

T (y/Y )φ(y) d×y

assigning to a parameter Y the smoothened integral of φ|H over the corresponding
dyadic range. We have ∫

ΓH\H
φ|.|s−1/2 = L(π, s)Z(Wφ, s),

where Z(Wφ, s) denotes the local zeta integral

Z(Wφ, s) :=

∫
H

Wφ|.|s−1/2.

For s = O(1), we see by explicit calculation that

Z(Wφ, s) ≈ T s−3/4.

If moreover |ℜ(s)| ≤ 1/2, then the convexity bound reads

L(π, s) ≪ T 1−s.

These bounds become only polynomially worse if we relax the condition s = O(1)
to ℜ(s) = O(1). Multiplying them together and convolving against the rapidly-
decaying Mellin transform of the fixed test function T , we deduce the Mellin trans-
form estimate

|ℜ(s)| ≤ 1/2 =⇒ Ĩ(s) ≪ T 1/4(1 + |s|)−∞.

It follows readily that for fixed κ > 0, we incur the acceptable error O(T 1/4−κ/2) by
smoothly truncating the integral

∫
H
φ to the range {T−κ < |y| < Tκ}. If we seek

only a qualitative subconvex bound, then we can take κ as small as we like, so there
is no harm in truncating to {|y| = T o(1)}. (Note that these arguments are specific
to φ: for general vectors, one cannot always truncate to the range |y| = T o(1).)

The model problem is thus to bound∫
y∈H,y≍1

φ(y) d×y. (6.1)
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7. Symmetries

We use a convolution kernel ω ∈ C∞
c (G) to “remember” many of the symmetries

satisfied by φ. (When amplifying, we really take ω ∈ C∞
c (PGL2(A)).) Roughly

speaking, we take ω to be a character multiple of an approximate subgroup of G:

ω := vol(J)−11smooth
J χ−1

τ ,

where:

• J is a subset of G roughly of the shape

J = (1 + O(T−ε)) ∩ (Gτ +O(T−1/2−ε)),

with Gτ the stabilizer of τ , as described in (5.3).
• 1smooth

J is a smoothened characteristic function of J .
• χτ is the “approximate character” of J attached to τ , given near the identity
in exponential coordinates by

χτ (exp(X)) = ei⟨X,τ⟩.

We may also describe ω in terms of the function g∗ → C obtained by taking the
Fourier transform of the pullback ω ◦ exp. This function is roughly a smoothened
characteristic function of a “coin-shaped” neighborhood of τ , of thickness T ε (resp.
T 1/2+ε) in directions transverse (resp. tangential) to the coadjoint orbit Oπ at τ .
The intersection of this neighborhood with Oπ has symplectic volume ≈ T 2ε ≈ 1.
The orbit method heuristic suggests that for an irreducible representation σ of
G, we have σ(ω) ≈ 0 unless σ is a principal series representation of parameter
T +O(T ε), in which case σ(ω) is approximately a projection onto a rank ≈ T 2ε ≈ 1
“subspace” of vectors microlocalized at τ . In particular,

π(ω)φ ≈ φ. (7.1)

These heuristics and definitions can be made precise, and the above approximation
holds in an extremely strong sense (i.e., up to O(T−∞) with respect to any fixed
seminorm).

For further informal discussion concerning ω in a general setting, see [13, §2]. For
a precise discussion in the current rank one example, see §7.1 of Quantum variance
III.

8. The convexity threshold

Let’s explain how to recover the convexity bound from here. Our task is to show
that ∫

y∈H,y≍1

π(ω)φ(y) d×y ≪ T 1/4.

We view the square of the left hand side as one term arising from an integrated
pretrace formula, like in the sup norm story [8]. Alternatively, we write the left hand
side as the inner product of φ against a Poincaré series and apply Cauchy–Schwarz;
see [13, §5.3]. Either way, we reduce to checking that∫

y1,y2≍1

∑
γ∈Γ

ω(y−1
1 γy2) ≪ T 1/2. (8.1)
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Since ω is supported on 1 + O(T−ε), we see that the only γ that contribute are
those in ΓH . Combining the y1 and y2 integrals, it remains to check that∫

y∈H:y≍1

ω(y) ≪ T 1/2. (8.2)

To that end, we observe that

H ∩Gτ = {1},
i.e., that no nontrivial matrices are simultaneously diagonal and of the form (5.3).
(This is a baby case of the “stability” feature explained in [14, §1.9, §14].) It follows
that (up to some ε’s in the exponents)

H ∩ J ⊆ O(T−1/2),

and so the volume of the integral in (8.2) is O(T−1/2).
On the other hand, the magnitude of the integrand is

vol(J)−1 ≈ T.

Indeed, J has dimensions roughly 1 along one direction and T−1/2 along the re-
maining two directions.

These observations combine to give the required estimate (8.2).

Remark 5. It’s clear in retrospect that we should have obtained such an estimate:
the orbit method heuristic applied to ω suggests that the left hand side of (8.1)
is a proxy for the sum of |L(π, 1

2 )|
2 over T in an interval of width roughly O(T ε)

(see [13, §2.3]), which is of the appropriate size for an averaged Lindelöf estimate
to recover convexity.

9. Amplification

This section is just a stub; see [13, §1.5, §2.7-2.10] for details and pictures relevant
for this example. To carry out the amplification step, we basically need to know
that the vector φ′ obtained by averaging the translates of φ under elements of H
of size ≍ 1 satisfies a matrix coefficient estimate ⟨gφ′, φ′⟩ ≪ T−δ except when g is
very close to H. This is word-for-word what happens in the sup norm problem [8],
where, if we replace H with SO(2), then φ′ becomes something like the weight zero
vector.

10. Comparison with Iwaniec

The “two arguments” are “equivalent.” Recall that Iwaniec [7] starts with the
approximate functional equation, applies Kuznetsov, and then applies Poisson sum-
mation to both variables. The reduction to (6.1) is essentially the approximate func-
tional equation (TODO: explain this in some detail?). In the passage to (8.1), rather
than applying the pretrace formula, we could have instead applied the Fourier ex-
pansion of φ and averaged each term in the resulting double sum using Kuznetsov.
A couple applications of Poisson to the geometric side of Kuznetsov would then
bring us right back to (8.1).

It’s more interesting to compare the generalization of this argument to GL3 with
Blomer–Buttcane [3]. The arguments are again ultimately “equivalent,” but the
present approach seems less miraculous.
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13(2):453–468, 2001.

[7] Henryk Iwaniec. The spectral growth of automorphic l-functions. Journal für die reine und

angewandte Mathematik, 428:139–160, 1992.
[8] Henryk Iwaniec and Peter Sarnak. L∞ norms of eigenfunctions of arithmetic surfaces. Ann.

of Math. (2), 141(2):301–320, 1995.

[9] Elon Lindenstrauss. On quantum unique ergodicity for Γ\H×H. Internat. Math. Res. Notices,
(17):913–933, 2001.

[10] Philippe Michel and Akshay Venkatesh. The subconvexity problem for GL2. Publ. Math. Inst.

Hautes Études Sci., (111):171–271, 2010.

[11] Paul D. Nelson. Eisenstein series and the cubic moment for PGL2. arxiv preprint, 2019.
[12] Paul D. Nelson. Bounds for standard L-functions. arXiv e-prints, page arXiv:2109.15230,

September 2021.

[13] Paul D. Nelson. Spectral aspect subconvex bounds for Un+1×Un. Invent. Math., 232(3):1273–
1438, 2023.

[14] Paul D. Nelson and A. Venkatesh. The orbit method and analysis of automorphic forms. Acta

Math., 226(1):1–209, 2021.
[15] Raphael Schumacher. Subconvexity for GL3(R) L-Functions via Integral Representations.

arXiv e-prints, page arXiv:2004.06791, April 2020.

[16] Lior Silberman and Akshay Venkatesh. On quantum unique ergodicity for locally symmetric
spaces. Geom. Funct. Anal., 17(3):960–998, 2007.

[17] Steven Zelditch. Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke
Math. J., 55(4):919–941, 1987.


	1. Goal
	2. Automorphic background
	2.1. Cuspidal automorphic representations
	2.2. Whittaker expansion
	2.3. Kirillov model

	3. Integral representation
	4. Coadjoint orbits
	5. Choice of vector
	6. Truncation
	7. Symmetries
	8. The convexity threshold
	9. Amplification
	10. Comparison with Iwaniec
	References

