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Abstract. We attempt, unsuccessfully, to estimate certain second moments
for GL2 involving conductor-truncated families.

1. Overview

We consider π on PGL2(Z)\PGL2(R) and try to estimate∑
C(π)≤Q

∣∣L(π, 1
2 + iT )

∣∣2 .
Here Q and T are asymptotic parameters. We have in mind the range Q ≪ T .
In this range (or indeed, for Q ≪ T 2), the analytic conductors for the individual
L-functions are ≍ T 2, so the convexity bound for the the squared L-function is
≪ T . It is straightforward to obtain an asymptotic formula for the above moment
in the range where Q ≫ T . We would like to obtain an essentially sharp upper
bound for some Q ≪ T , ideally Q ≪ T 1−δ. This seems hard.

Note that the range Q ≍ T is critical: a sharp bound for the moment in this
range recovers the convexity bound for the individual L-values, while a sharp bound
in any shorter range would give a subconvex bound.

2. Test functions

Let’s set things up. We take a test function f0 to be a normalized smoothened
characteristic function of K0(Q), the archimedean variant of the standard congru-
ence subgroup, like in [1]:

K0(Q) =

{(
a b
c d

)
: a = 1 + o(1), b = o(1), c ≪ 1/Q, d = 1 + o(1)

}
.

This should typically pick off something like an “analytic newvector” W0 ∈ π for
π with C(π) ≤ Q. In the Kirillov model, W0 could be taken to look like a smooth
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bump supported near 1:

W0(y) ≈ 1smooth
y≍1 .

We then defined f to be the conjugate of f0 by n(T ). On the spectral side, the
contribution from π will be∣∣L(π, 1

2 + iT )
∣∣2 ∑

W0∈B(π)

∣∣∣∣∫
y∈R×

π(f)W0(y)|y|iT d×y

∣∣∣∣2 .
Now consider the contribution from an “analytic newvector” W0 as above. The
local weight will be, with

W := n(T )W0, W (y) = e(Ty)W0(y),∣∣∣∣∫
y∈R×

W (y)|y|iT d×y

∣∣∣∣2 ≍ T−1.

So far, so good.

3. Geometric approximate functional equation

The problem is that we’re looking at the global period integral: for φ ∈ π,∫
y∈R×/Z×

φ(a(y))|y|iT d×y, a(y) :=

(
y 0
0 1

)
.

We really want to replace this with an integral over a compact subset of R×/Z×,
so that we can later apply Cauchy—Schwarz productively. We argue like in [2,
§5.1.4] (see also [3, §5.3]). The idea is that if we smoothen this integral out, then
we get quite bounds away from some critical dyadic range, and then we focus on
that range.

Let’s get started by fixing h ∈ C∞
c (R×

+). We Mellin expand h:

h(t) =

∫
(σ)

H(s)ts
ds

2πi
.

We assume h normalized to have integral one, so that H(0) = 1.
For each positive parameter Y ∈ R×

+, consider

I(Y ) :=

∫
y∈R×/Z×

h

(
|y|
Y

)
φ(a(y))|y|iT d×y.

Then we aim to bound I(Y ) using the convexity bound for L(π, s). We have

I(Y ) =

∫
(σ)

Y −sĨ(s)
ds

2πi
, (1)

where

Ĩ(s) := H(s)Z(φ, 1
2 + s+ iT ),

Z(φ, 1
2 + s) :=

∫
y∈R×/Z×

φ(a(y))|y|s d×y.

H(s) decays rapidly, so we can think of it informally as truncating to s = O(1).

Strategy: eventually we will bound Ĩ(0) = Z(φ, 1
2 + iT ) by applying Cauchy’s

theorem:

Ĩ(0) =

∮
Ĩ(s)

s

ds

2πi
,
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where, since Ĩ decays rapidly, we can take the contour to consist of a vertical line
at ℜ(s) = ε going up followed by a vertical line at ℜ(s) = −ε going down, i.e., we
consider the “box”

ε− i∞ → ε+ i∞ → −ε+ i∞ → −ε− i∞ → ε− i∞.

Here we will have s ≫ 1, and also Ĩ(s) will decay rapidly, so the main point is to
bound, for ℜ(s) = ±ε,

Ĩ(s) =

∫
Y ∈R×

+

Y −sI(Y )
dY

Y
,

which, by the triangle inequality, satisfies∣∣∣Ĩ(s)∣∣∣ ≤ ∫
Y ∈R×

+

max(Y, 1/Y )ε|I(Y )| dY
Y

.

Note: the bound that we seek for Ĩ(0) should be compared to the trivial bound
following from convexity, which is

Ĩ(0) ≍ T−1/2L(π, 1
2 + iT ) ≺ 1.

We need to bound Z(φ, s). We do this via interpolation. In general,

Z(φ, 1
2 + s) = L(π, 1

2 + s)Z(W, 1
2 + s),

where W = Wφ is as constructed above and

Z(W, 1
2 + s) =

∫
R×

W0(y)e(Ty)|y|s d×y.

For ℜ(s) ≪ 1, since W is a bump near 1, we have

Z(W, 1
2 + s) ≈ T−1/2−ℑ(s)1ℑ(s)≍T .

So if we take ℜ(s) = 1/2+ ε, then we get a bound of ≪ T−1/2. On the other hand,
by the convexity bound,

L(π, 1
2 + s) ≺ 1 for ℜ(s) = 1/2 + ε.

So this tells us that

Z(φ, 1
2 + s) ≺ T−1/2 for ℜ(s) = 1/2 + ε.

What does this tell us concretely? Look back at the integral representation (1).
If we shift to σ = 1/2 + ε, then the function H(s) will truncate us to s ≪ 1, so we
can bound the integral by something like its pointwise values at s ≪ 1, which will
be

≺ Y −1/2T−1/2.

What this is saying is that if Y is a bit larger than T−1, then the “trivial bound”
for I(Y ) that we just sketched is stronger than 1. So it suggests that the main
range to consider will be when Y ⪅ T−1.

Now we should do the same thing but shifting in the opposite direction to find
a complementary upper bound on the range of Y that we need to consider. Let’s
shift to ℜ(s) = −1/2− ε for small ε > 0. Then we have, for s ≪ 1,

L(π, 1
2 + s+ iT ) ≺ T,

while we get the same bound Z(W, 1
2 + s+ iT ) ≺ T−1/2 as before. Thus

Z(φ, 1
2 + s) ≺ T 1/2 for ℜ(s) = −1/2− ε.
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Now again shifting to σ = −1/2− ε in (1), we get

I(Y ) ≺ Y 1/2T 1/2.

This bound will be stronger than “≺ 1” if Y is a bit smaller than T−1.
Thus, the moral is that if we just want a subconvex bound for L(π, 1

2 + iT ), then
it suffices to nontrivially estimate I(Y ) for Y ≈ 1/T , i.e., up to T ε factors. Of
course to actually recover the Weyl bound we need to consider a wider range of Y
and make the analysis uniform in that. We would have had to do the same thing in
the “classical” approach; the corresponding feature there is that the approximate
functional equation has smaller dyadic ranges than the main one, i.e., we have

L(π, 1
2 + iT ) ≈

∑
n≪T

λ(n)

n1/2+iT
,

which we can’t altogether approximate by the contribution from n ≍ T .

4. Applying relative trace formula

So we should now, I think, study I(Y ), for Y ≈ 1/T , via relative trace formula
whatever stuff. That means we should write down the double integral (H = GL1 ↪→
PGL2) ∫

x,y∈H:
x,y≍1/T

|x/y|iT
∑
γ∈Γ

f(x−1γy) dx dy.

Here dx and dy denote Haar measures on H, i.e., of the form dt/|t| with respect
to Lebesgue measure, so that the integral over x and y is roughly a probability
measure. This sum should correspond very roughly to∑

C(π)≤Q

T−1
∣∣L(π, 1

2 + iT )
∣∣2 ,

or at least the “main dyadic part” of those L-values. It may be useful to write x, y
as multiples by a(1/T ) over elements in H of size ≍ 1, so that the main thing to
consider becomes ∫

x,y∈H:
x,y≍1

|x/y|iT
∑
γ∈Γ

f(a(T )x−1γya(1/T )) dx dy.

We want to bound this by ≪ Q/T .

Remark 1. More precisely, here an expression like∫
x∈H:
x≍1

f(x) dx

means ∫
x∈H∼=R×

f(x)V (x) dx,

where V lies in some fixed bounded subset of C∞
c (R×). For example, we could take

V to be a fixed element of that space, such as a smooth bump function supported
on the interval (1, 2).
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5. Writing stuff out

We remember that

f(g) = f0(n(−T )gn(T )).

Thus

f(a(T )x−1γya(1/T )) = f0(n(−T )a(T )x−1γya(1/T )n(T )).

We can do some conjugation:

n(−T )a(T )x−1γya(1/T )n(T ) = a(T )n(−1)x−1γyn(1)a(1/T ).

f0 should detect when this lands in K0(Q).

K0(Q) = G ∩
(
1 +

(
o(1) o(1)

o(1/Q) o(1)

))
,

so

a(1/T )K0(Q)a(T ) = K0(Q) = G ∩
(
1 +

(
o(1) o(1/T )

o(T/Q) o(1)

))
.

So the main condition to work with is now that

n(−1)x−1γyn(1) ∈ 1 +

(
o(1) o(1/T )

o(T/Q) o(1)

)
=: J.

There’s the contribution from γ ∈ ΓH
∼= {±1}. For this, we’re basically looking

at

Q

∫
x∈H:
x≍1

1n(−1)xn(1)∈J dx.

We have

n(−1)xn(1) =

(
x x− 1
0 1

)
.

This lies in J only if x = 1 + o(1/T ), which happens with probability ≪ T , so we
get the required bound Q/T .

It remains to estimate the contribution of the off-diagonal:

Q
∑

γ∈Γ−ΓH

∫
x,y∈H:
x,y≍1

|x/y|iT 1n(−1)x−1γyn(1)∈J dx dy.

We’ll see below that we’re in a range where it’s not possible to extract oscillation
from the integrals over x and y.

6. Matrices

Thus

f(a(T )x−1γya(1/T )) = f0(n(−T )a(T )x−1γya(1/T )n(T )).

We can do some conjugation:

n(−T )a(T )x−1γya(1/T )n(T ) = a(T )n(−1)x−1γyn(1)a(1/T ).

f0 should detect when this lands in K0(Q).

K0(Q) = G ∩
(
1 +

(
o(1) o(1)

o(1/Q) o(1)

))
,

so

a(1/T )K0(Q)a(T ) = G ∩
(
1 +

(
o(1) o(1/T )

o(T/Q) o(1)

))
.
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So the main condition to work with is now that

n(−1)x−1γyn(1) ∈ 1 +

(
o(1) o(1/T )

o(T/Q) o(1)

)
=: J.

There’s the contribution from γ ∈ ΓH
∼= {±1}. For this, we’re basically looking

at

Q

∫
x∈H:
x≍1

1n(−1)xn(1)∈J dx.

We have

n(−1)xn(1) =

(
x x− 1
0 1

)
.

This lies in J only if x = 1 + o(1/T ), which happens with probability ≪ T , so we
get the required bound Q/T .

It remains to estimate the contribution of the off-diagonal:

Q
∑

γ∈Γ−ΓH

∫
x,y∈H:
x,y≍1

|x/y|iT 1n(−1)x−1γyn(1)∈J dx dy.

We want to bound this by ≪ Q/T? The convexity bound for |L|2 is ≪ T , so we
need to bound the sum by ≪ 1 to improve upon convexity. So we really need to
show ∑

γ∈Γ−ΓH

∫
x,y∈H:
x,y≍1

|x/y|iT 1n(−1)x−1γyn(1)∈J dx dy ≪ 1/Q

but we might hope to be able to show (for certain ranges of Q)∑
γ∈Γ−ΓH

∫
x,y∈H:
x,y≍1

|x/y|iT 1n(−1)x−1γyn(1)∈J dx dy ≪ 1/T.

We recall that, writing

γ =

(
a b
c d

)
,

we have

x−1γy =

(
ay/x b/x
cy d

)
,

hence

n(−1)x−1γyn(1) =

(
ay/x− cy b/x− d+ ay/x− cy

cy d+ cy

)
.

We arrive at the following conditions:

(i) cy = o(T/Q), or equivalently, c ≪ T/Q (because y ≍ 1),
(ii) ay/x− cy = 1 + o(1), which determines a up to o(1) if we know (x, y, c),
(iii) d+ cy = 1 + o(1), which determines d up to o(1) if we know (x, y, c),
(iv) b/x − d + ay/x − cy = o(1/T ), which should be satisfied about a proportion

1/T of the time.

So that would lead to an overall bound of 1/Q. We need to do a bit better than
that. Seems tough!
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